NewtonApplication
Development

Newton Internet Enabler

o

Version 1.0

© Apple Computer, Inc. 1996

" Apple Computer, Inc.

© 1996, Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to
be made for others, whether or not
sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.

Printed in the United States of
America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop

Draft. Preliminary, Confidential. © Apple Computer, Inc. 6/13/96

applications only for Newton
devices.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter,
Macintosh, Mac, MPW,
MessagePad, and Newton are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.

Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Varityper is a registered trademark
of Varityper, Inc.

Windows is a trademark of
Microsoft, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE

LIMITED IN DURATION TO NINETY

(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS1S,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Chapter 1

Contents

Contents

Contents iii

Newton Internet Enabler 1-1

About Newton Internet Enabler 1-2
The Inet Tool Layer 1-4
The Link Controller ~ 1-4
The Domain Name Service Interface 1-6
Using Newton Internet Enabler 1-7
Using Endpoints With Newton Internet Enabler Links 1-8
Using Multiple Endpoints With a Link ~ 1-9
Newton Internet Enabler and Callback Functions 1-9
Using the Newton Internet Enabler Link Controller 1-11
Grabbing a Link 1-12
Retrieving and Displaying Link Status Information 1-15
Configuring Newton Internet Enabler for Your
Endpoint 1-16
Binding Your Endpoint with Newton Internet
Enabler 1-17
Connecting Your Endpoint with Newton Internet
Enabler 1-18
Sending Data 1-18
Sending Data With a UDP Connection 1-19
Sending Data With a TCP Connection 1-20
Receiving Data 1-21

iii

Receiving Data With UDP 1-21

Receiving Data With TCP 1-23
Disconnecting Your Endpoint 1-25
Releasing Your Link 1-26

Power Management and Internet Links 1-27
Using the Domain Name Service Interface 1-27
Using the Newton Internet Enabler Options 1-29

Newton Internet Enabler Interface Reference 1-30

Constants 1-30
Status Code Constants 1-31
Transport Service Type Constants 1-31
Link Controller Error Codes 1-31
DNS Error Codes 1-32

Newton Internet Enabler Lower-Level Tool Errors 1-34

Inet Tool Errors 1-34
Application-related Errors 1-37
UDP Errors 1-40
Inet Tool-Specific Errors 1-41
Newton Internet Enabler Events 1-42
Handing TCP Disconnect Events 1-43
Newton Internet Enabler Function Parameter
Information 1-43
The Link Identifier Parameter 1-43
The Client Context Parameter 1-44
The Client Callback Parameter 1-44
The Link Controller Callback Function Format 1-45
The Link Controller Status Frame 1-45
The Link Entry Information Frame 1-46
Login Script Frames 1-49
The Domain Name Service Callback Function Format
The DNS Results Frame 1-51
Link Controller Functions and Methods 1-53
InetAddNewLinkEntry 1-53
InetCancelCurrentRequest 1-53
InetCancelLink 1-53
InetDisconnectLink 1-54

iv

1-50

InetDisplayStatus 1-54
InetGetAllLinksStatus 1-56
InetGetDefaultLinkID 1-57
InetGetLinkEntry 1-57
InetGetLinkStatus 1-57
InetGrabLink 1-58
InetOpenConnectionSlip 1-59
InetReleaselLink 1-60
InetSetDefaultLinkID 1-61

Domain Name Service Functions and Methods 1-61
DNSCancelRequests 1-61
DNSGetAddressFromName 1-62
DNSGetMailAddressFromName 1-63
DNSGetMailServerNameFromDomainName 1-64
DNSGetNameFromAddress 1-66

Newton Internet Enabler Options 1-67
Inet Tool Expedited Data Transfer (iexp') Option 1-67
Inet Tool Physical Link Identifier ('ilid') Option 1-68
Inet Tool Local Port ('ilpt') Option ~ 1-69
Inet Profile (iprf') Option ~ 1-71
Inet Tool TCP Remote Socket (itrs') Option 1-72
Inet Tool Transport Service Type (litsv') Option ~ 1-73
Inet Tool UDP Destination Socket ('iuds') Option 1-74
Inet Tool UDP Source Socket (‘iuss') Option ~ 1-75

Newton Internet Enabler Exceptions 1-76

Summary of Newton Internet Enabler 1-77

Link Controller Errors 1-77

DNS Errors 1-77

Newton Internet Enabler Lower-Level Tool Errors 1-78

Link Controller Functions and Methods 1-80

DNS Functions and Methods 1-80

Exceptions 1-80

Newton Internet Enabler

This chapter describes the NewtonScript interface to Newton Internet
Enabler, a collection of built-in software that allows Newtons to interface
with the Internet. This chapter describes:

= how the components of Newton Internet Enabler work together
= how to use Newton Internet Enabler in your NewtonScript applications

= the constants, protos, functions, and methods that you use with Newton
Internet Enabler

= the options that you use to control and configure Newton Internet Enabler

For information about the user interface to Newton Internet Enabler, see the
User’s Guide to Newton Internet Enabler.

To use Newton Internet Enabler, you must understand how to use endpoints
to perform communications operations on the Newton. To learn about
endpoints, see the chapter “Endpoint Interface” in Newton Programmer’s
Guide.

CHAPTER 1

Newton Internet Enabler

About Newton Internet Enabler

With Newton Internet Enabler, you can establish a link to the Internet to
allow your applications to communicate over the net. Newton Internet
Enabler supports one link to the Internet at any time; however, several
Newton applications can use that link to perform communications.

Newton Internet Enabler consists of an application named Internet Setup,
with which users can configure their Internet access, and a NewtonScript
application programming interface (API), with which you can send and
receive data, determine status, and modify your configuration parameters.

Underneath the NewtonScript API is the Inet tool, which is a built-in
Newton communications tool that is used by the other Newton Internet
Enabler components to provide the standard Newton communications
operations.

The Newton Internet Enabler interface components are:

s The Inet communications tool, which provides the capability to establish
and use links to the Internet via the TCP/IP family of protocols. This tool
implements a streams interface with a communications stack, providing
the capability to use various transport-level and link-level protocols. You
can use standard Newton communications endpoint methods and options
to control the operations provided by the Inet tool.

s The Link Controller, which uses the Inet tool and maintains net links at a
higher level, providing a convenient NewtonScript interface for
applications. You use the link controller by calling the global functions
that it provides.

s The Domain Name Service interface, which provides functions for
converting between Internet host names and their corresponding IP
Numbers. You use the domain name service by calling the global
functions that it provides.

Figure 1-1 shows the relationship of the Newton Internet Enabler
components.

1-2 About Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

Figure 1-1 The Newton Internet Enabler layers and components

NewtonScript
client applications

Link setup
information

Link host names,
Controller IP numbers
requests

configuration info

Domain
Name
Server

Link Controller

endpoint
communications
scripting calls

Inet tool

function calls Inet tool option requests

Inet tool (‘'inet’)

Newton Internet Enabler communications stack

TCP ubP transport protocols

PPP SLip link-level protocols

serial stub driver

physical link requests
(communications tool requests,
e.g. connect, get, put, etc.)

Lower-level Newton comm tool
(e.g. the built-in modem tool)

data out data in

About Newton Internet Enabler 1-3

CHAPTER 1

Newton Internet Enabler

The Inet Tool Layer

The Inet communications tool provides a configurable stack of protocols at
and below the TCP/IP level. The Inet tool is a standard Newton
communications tool, which means that it provides all of the endpoint
services that are provided by other built-in communications tools, including
the built-in modem tool and the built-in serial tool.

Like the other communications tools, you can control the configuration of the
Inet tool with communications options. The options that you use with the
Inet tool all use the ' i net' service identifier and are described in this
chapter.

For more information on how to use the Newton endpoint interface, Newton
communications options, and the other built-in communications tools, see
Newton Programmer’s Guide.

The Inet tool supports physical links using the built-in serial tool or the
built-in modem tool. You are currently limited to the use of one physical link
at any point in time.

The Inet tool can run various link-level protocols that are provided with the
Newton system software. These currently include PPP and SLIP.

The Inet tool can establish links using various low-level communications
services. Each communications service is provided by a Newton
communications tool such as the built-in modem tool.

The Link Controller

You can use the Link Controller to create and manage a link between the
Newton and the Internet. The Link Controller can manage a single link for
multiple applications simultaneously. This means that one application
establishes the link and other applications use the same link.

The Link Controller uses and provides a higher-level interface to the link
control functions and options supported by the Inet tool. The Link Controller
functions are global functions built into the Newton operating system. The

About Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

use of the link controller functions is explained in the section “Using the
Newton Internet Enabler Link Controller” beginning on page 1-11.

The first grab of a link can be expensive in terms of time: typically, the Inet
tool software dials the Newton modem and negotiates the connection to
establish an Internet session. The Inet tool then performs whatever login and
initialization procedures are required, which the user has configured with
the Internet Setup application. All of this can take a substantial amount of
time.

Since it can take so much time to grab a new link, Newton Internet Enabler
makes it easy for another application to grab a link that has already been
established. Whenever an application grabs a link, the link controller
increments its count of users of that link. The physical link is dropped only
after all users have released the link (when the count becomes 0).

The following is an example of a typical flow of operations that occur during
an Internet session:

1. An application (“Application_1") calls | net OpenConnecti onSli p to
allow the user to customize the link settings and then issues a call to the
| net GrabLi nk function. The link controller dials the modem and begins
an Internet session with an Internet provider.

2. Application_1 instantiates and binds one or more endpoints to use over
that link. Each endpoint can use either the TCP or UDP transport services.
And you bind each endpoint either to initiate an outgoing connection
(connect) or to listen for an incoming connection (listen).

3. Application_1 uses its endpoint(s) to perform communications operations.

4. Another application (“Application_2") calls | net OpenConnecti onSli p
to allow the user to customize the link settings and then issues a call to the
I net Gr abLi nk function to use the same service provider as
Application_1. The Inet tool returns the same link that it established in
step 1.

5. Application_2 creates and uses endpoint(s) to perform communications
operations.

6. Application_2 finishes its use of the link and calls the | net Rel easeLi nk
function. The link controller decrements its count of users of the link.

About Newton Internet Enabler 1-5

1-6

CHAPTER 1

Newton Internet Enabler

7. Application_3 grabs the link, creates endpoints to use over the link, and
releases the link.

8. Application_1 finishes its use of the link and calls the | net Rel easeLi nk
function. The link controller decrements its count of link users. The count
becomes 0, so the link is dropped: the Internet session ends, the modem is
hung up, and any resources used for the link are released.

Note

Only one Internet session can be active at any time. This
means that if an application requests a link to a different
Internet service provider when a session is in progress, the
I net GrabLi nk call will fail and generate an error. O

The Domain Name Service Interface

The domain name service interface builds on top of the Inet tool to provide
Newton applications with the ability to translate Internet domain names into
IP numbers and vice-versa. The domain name service (DNS) functions are
also global functions in the Newton operating system. You can use these
functions to:

= translate a domain name into its corresponding Internet address

» translate a a domain name into the Internet address for a mail server that
serves that domain

» translate a domain name into the domain name for a mail server that
serves that domain

= translate an Internet address into its corresponding domain name

IMPORTANT

The Newton Internet Enabler implements what is known as
a “stub domain name service resolver.” The NIE domain
name resolver does not re-query the server based on what
type of response it received. This means that users must
specify a recursive name server for their DNS server.

About Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

The use of the domain name server functions is explained in the section
“Using the Domain Name Service Interface” beginning on page 1-27.

Using Newton Internet Enabler

This section helps you understand how to use Newton Internet Enabler in
your NewtonScript application programs. To use Newton Internet Enabler,
you need to know about the options and functions provided by the Newton
Internet Enabler APIL You also need to understand the callback functions that
many of the functions use to communicate results back to your application.
And finally, you need to know the proper sequence of steps to take when
using Newton Internet Enabler.

The next section, “Using Endpoints With Newton Internet Enabler Links,”
describes the relationship between the links that Newton Internet Enabler
maintains for you and Newton communications endpoints.

The section, “Newton Internet Enabler and Callback Functions” beginning
on page 1-9 describes the format and use of callback functions with Newton
Internet Enabler.

The section “Using the Newton Internet Enabler Link Controller” beginning
on page 1-11 outlines the basic sequence of steps that you need to perform to
use the link controller with a Newton communications endpoint. The
subsections of “Using the Newton Internet Enabler Link Controller” describe
each step in detail.

The section “Using the Domain Name Service Interface” beginning on
page 1-27 describes how to use the domain name service API to translate
between Internet addresses and domain name strings.

The section “Using the Newton Internet Enabler Options” beginning on
page 1-29 provides detailed information about using Newton
communications options to configure and control your Newton Internet
Enabler sessions.

Using Newton Internet Enabler 1-7

1-8

CHAPTER 1

Newton Internet Enabler

Note

You can override the default Inet icon by defining the ' | con
slot in your application’s base view. O

Using Endpoints With Newton Internet Enabler Links

You use Newton Internet Enabler in your applications in much the same way
that you use the other built-in Newton communications tools: you instantiate
endpoints to use with Newton Internet Enabler and perform your
communications operations with those endpoints. To learn about endpoints,
see the chapter “Endpoint Interface” in Newton Programmer’s Guide.

You specify the Newton Internet Enabler service identifier (' i net ') in your
service options, and configure Newton Internet Enabler by passing options
in options frames to your endpoint methods. See the section “Using the
Newton Internet Enabler Options” beginning on page 1-29 for information
about which options to use with each of your endpoint methods.

You can use a Newton Internet Enabler link with more than one endpoint. In
fact, it makes sense to reuse your link with multiple endpoints over the life of
your application: the first application to grab the link establishes an Internet
session by dialing a modem and negotiating the low-level connection, and
subsequent applications can use the same session without having to pay that
price.

Your application can use several endpoints with the same Newton Internet
Enabler link. Each endpoint, however, requires a significant amount of
memory. And the Newton system software restricts the total number (for all
applications) of endpoints that can be active.

To use multiple endpoints in your application, follow this sequence of
operations:

1. Grab the link, as described in the section “Grabbing a Link” beginning on
page 1-12.

2. Instantiate your first endpoint for use with Newton Internet Enabler. Use
this endpoint to perform communications and then dispose of the
endpoint.

Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

3. Instantiate, use, and dispose of other endpoints.

4. Release your Newton Internet Enabler link, as described in the section
“Releasing Your Link” beginning on page 1-26.

Using Multiple Endpoints With a Link

Several Newton applications can use endpoints at the same time. In fact,
multiple applications can use multiple endpoints with a single Newton
Internet Enabler link. However, there are certain restrictions around
endpoint usage that you must beware of:

= Each endpoint requires a significant amount of memory

= The number of endpoints that can be open on the Newton at any time is
limited. The exact limit depends on your hardware configuration.

= The limit on opened endpoints applies to the Newton as a whole. This
means that if the machine limit is 4 endpoints and one application is using
2 endpoints, all other applications will be restricted to the possibility of
using 2 endpoints.

Newton Internet Enabler and Callback Functions

Many of the Newton Internet Enabler functions require you to provide a
callback function, which is a function that the Inet tool calls during and/or
after the performance of the operation that you requested. The callback
function receives status and error information.

For example, the | net Cancel Li nk function calls the callback function that
you provide after it finishes its operation. Your callback function for

I net Cancel Li nk can determine if an error occurred and can determine the
current status of the link that you wanted cancelled.

Some operations call your callback function more than once. For example,
the | net Gr abLi nk function calls the callback function you provide many
times during its operations. You can use your | net G abLi nk callback
function to monitor the progress of the grab, since each call to it provides
you with the current status.

Using Newton Internet Enabler 1-9

CHAPTER 1

Newton Internet Enabler

When a function requires that you specify a callback function, you do so by
providing a context frame and the symbol of the function defined in that
frame that you want to use as the callback function. For example, the

| net G abLi nk function takes three parameters and is declared as follows:

I net GrabLi nk(linkID, clientContext, clientCallback) ;

When you call InetGrabLink, you must specify a frame (or your application
frame) as the value of clientContext, and you must specify a function defined
in the frame as the value of clientCallback.

You might create a callback function for your | net Gr abLi nk calls that looks
like the following:

myApp. GrabLi nkCal | back : = func(linklD, stat, err)

begi n

if err=nil and stat.linkStatus <> 'connected then
; /1 display status

if err then
; /! handl e the error

/1 link established, so resolve the address

end;

Then, when you call the | net Gr abLi nk function in your application, you
pass it the name of your callback function. For example:

nyApp. Test Grab : = func()
begi n
nyStatusView : = InetStatusDisplay(nil, nil, nil);
I net GrabLi nk(nil, self, 'GabLinkCall back);

end;
This function first calls the | net St at usDi spl ay function to create and
display the status view. The call to | net Gr abLi nk uses the default link ID
and specifies sel f (the application frame) as the value of the clientContext

parameter, and ' Gr abLi nkCal | back (the symbol for the callback function)
as the value of the clientCallback parameter. The Gr abLi nkCal | back

1-10 Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

function will be called repeatedly while the system is attempting to grab the
link, until either the status is' connect ed or an error occurs.

The section “Grabbing a Link” beginning on page 1-12 provides a complete
example and explanation of a callback function for the | net Gr abLi nk
function.

The section “Retrieving and Displaying Link Status Information” beginning
on page 1-15 describes how to use the | net St at usDi spl ay function to
display the progress of your | net G abLi nk operation.

The section “Newton Internet Enabler Function Parameter Information”
beginning on page 1-43 provides a detailed description of the clientContext
and clientCallback parameters that you use in your Newton Internet Enabler
function calls.

Using the Newton Internet Enabler Link Controller

The following is the sequence of steps that you need to perform when using
Newton Internet Enabler in your application. Each step is described in detail
in the sections that follow.

1. Grab a link by calling the | net Gr abLi nk function. Before calling
I net G abLi nk, call | net OpenConnecti onSl i p to allow the user to
modify the default link settings. While the link is being grabbed, call the
I net Di spl aySt at us function to report the current link status to the
user. After the link is grabbed, store the returned link ID into a variable for
future access.

2. Instantiate an endpoint, passing down the Inet configuration options.

3. Bind the endpoint. The options that you pass down depend on whether
you are using TCP or UDP, and on whether you are binding to initiate an
outgoing connection (connect) or to wait for an incoming connection
(listen).

4. Connect the endpoint. If you are using a TCP link, pass down the TCP
remote socket option.

5. Set up the input spec for your endpoint.

Using Newton Internet Enabler 1-11

1-12

CHAPTER 1

Newton Internet Enabler

6. Set up the output spec for your endpoint.
7. Send and receive data.
8. Disconnect and dispose of your endpoint.

9. Release the link by calling the | net Rel easeLi nk function.

Grabbing a Link

To get started, you need to establish (grab) a link. To establish a link, you
need to call the | net G abLi nk function. Before calling InetGrabLink, you
should call the | net OpenConnect i onSl i p function to allow the user to
modify the default link settings. This function also resets the default link ID.

I net OpenConnect i onSl i p(linkID, clientContext, clientSlipCallback)

After | net OpenConnect i onSl i p finishes, it calls your callback function to
let you know whether or not to proceed with the connection process.

I net penConnecti onSl i p passes one parameter, a symbol, to your
callback function. If the symbol is ' connect, you should proceed with the
connection; if not, the user cancelled the connection,

After calling | net QpenConnect i onSl i p, you call | net Gr abLi nk with a
link ID, a callback function, and a callback context frame:

| net Gr abLi nk(linkID, clientContext, clientCallback)

For the linkID, you can tell | net Gr abLi nk to use the default link by using
ni | or you can use an identifier returned by the | net AddNewLi nkEnt ry
function as the value of this parameter. When you specify ni | , the system
software uses the link ID that has been established as the default link ID.
This is the ID established by the user in the connection slip. You almost
always use ni | as the value of this parameter to specify the default link ID,
especially if you have first called | net OpenConnect i onSl i p.

The | net Gr abLi nk operation can take some time to complete. After you
call the I net Gr abLi nk function, the Newton system software repeatedly
calls your callback function to report the current status of grabbing the link.
I net G abLi nk calls your callback function until either an error occurs or
until the status becomes 'connected.

Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

The status value in your callback is a status frame, as described in the section
“The Link Controller Status Frame” beginning on page 1-45. This frame
contains the current link status value and (possibly) other information. In
your callback, you can use the | net Di spl aySt at us function to show the
current status to the user. The next section, “Retrieving and Displaying Link
Status Information,” describes how to display status to the user.

Here is an example of a callback function for the InetOpenConnectionSlip
function:

nmySli pCal | back : = func(action)
if action = 'connect then
I net GabLink(nil, self, 'GablinkCallback);

Here is an example of a callback function for the | net Gr abLi nk function:

myApp. & abLi nkCal | back := func(linklD, stat, err)
begin
nyLi nkI D : = |inkl D
if err then
begin
/1 handl e the error
Get Root (): Notify(kNotifyAl ert, kAppNare,
call kGetlnetError with (err));
/1 close the status dial og
I net Di splayStatus(nil, nyStatusView, nil);
end
else if status.linkStatus <> 'connected then
begi n
/1 just update the status dial og
I net Di splayStatus(nil, nmyStatusView, status);
end
el se begin
/1 now connected, soclose status dial og
/[l or start sending your own status
| ocal nyStatus := {

Using Newton Internet Enabler 1-13

1-14

CHAPTER 1

Newton Internet Enabler

st atusText: "Resol ving I nternet Address",};
InetDi splayStatus(nil, nyStatusView, nyStatus);
/1 resolve our host name address
DNSGet Addr essFromNane(" appl e. cont', sel f,
DNSCal | back) ;
end;
end;

The first statement, myLi nkl D: =l i nkl D, saves the ID of the link that
I net Gr abLi nk is in the process of grabbing in one of your variables. You
might want to store the link ID for use in other portions of your application.

If grabbing of the link is progressing without errors, your callback function
gets called to report the progress. You can call the | net Di spl aySt at us
function, as shown in the above example. The my St at Vi ew view used in the
this example was created before the grab of the link was initiated, as shown
in the next section, “Retrieving and Displaying Link Status Information.”

The grab of the link terminates when the connection is made or when an
error occurs. In either case, you can remove the status display view at that
point. To do so, call the | net Di spl aySt at us function with ni | as the
value of the status parameter.

If | net G abLi nk encounters an error, the error code will be a non-zero
value and your application has to do something with that error. In the
example function, a message is displayed and the connection attempt is
terminated.

If | net Gr abLi nk succeeds, the callback receives ' connect ed as the value
of | i nkSt at us. At that point, you can perform any operations that are
appropriate. The example function takes this opportunity to convert its
remote echo host name into an IP address, which is saved in a local variable
by the DNSCal | back function. While the name resolution is taking place,
the example updates the status display with its own message.

Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

Retrieving and Displaying Link Status Information

Many applications want to display status to the user while a net connection
is being established. Newton Internet Enabler makes this easy for you with
the I net Di spl aySt at us function, which displays link status information
on the Newton screen. Here is the declaration of the function:

statusView | net Di spl aySt at us(linkID, statusView, status)
You can use the | net Di spl aySt at us function in three ways, as follows:

= to create a new status view, pass ni | as the value of each parameter:
myStatusView : = I netDisplayStatus(nil, nil, nil);

= to display status for a link in an existing status view, pass in the link ID,
the status view, and the status frame that was sent to your callback
function:

I net Di spl aySt at us(nmyLi nkl D, nyStatusView, nyStatus);

= to remove and dispose of the status view, pass ni | as the value of the
status frame:
I net Di spl aySt atus(myLi nkl D, nyStatusView, nil);

The | net St at usDi spl ay function creates and uses a view that is based on
pr ot oSt at usTenpl at e. For information about this proto, see the chapter
“Additional System Services” in Newton Programmer’s Guide.

To initiate the status display, you need to open the status view. The most
convenient place to do this is just before your call to the | net Gr abLi nk
function. For example, the following function creates the status view, stores it
in ny St at Vi ewfor subsequent use, and then calls the | net Gr abLi nk
function:

DoG abLi nk : = func()

begin

myStatView : = InetDisplayStatus(nil, nil, nil);
| net GrabLi nk(nil, self, 'GabLinkCall back);
end;

Using Newton Internet Enabler 1-15

1-16

CHAPTER 1

Newton Internet Enabler

While the grab operation is in progress, you can update the status display
whenever your callback function gets called. For example, the following
code segment from a grab link callback function updates the status display if
no errors have occurred and if the link status has not yet become

' connect ed:

if err = nil and status.linkStatus <> 'connected then
I net Di splayStatus(linklD, nyStatView, stat);

When the grab operation is done, you can remove the status display. The
following code segment from a grab link callback function removes the
status display when the link status becomes ' connect ed:

if err = nil and status.linkStatus = 'connected then
InetDisplayStatus(linklD, nyStatView, nil);

The view displayed by the | net Di spl aySt at us function contains a button
that the user can tap to call the | net Cancel Li nk function.

Configuring Newton Internet Enabler for Your Endpoint

After grabbing your Newton Internet Enabler link, you need to instantiate
your endpoint. You send the | nst ant i at e message to your endpoint with
the options required to configure Newton Internet Enabler for your
application.

You must set three options in your | nst ant i at e message:

» The' i net service identifier option, which tells the Newton system
software to use Newton Internet Enabler with your endpoint.

s The Inet tool physical link (" i | i d') option, which tells Newton Internet
Enabler which link ID to use for your endpoint. Use the link ID that was
returned by the | net Gr abLi nk function.

s The Inet tool transport service type (' i t sv') option, which tells Newton
Internet Enabler which transport type (for example, UDP or TCP) to use
for your endpoint.

Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

Binding Your Endpoint with Newton Internet Enabler

After you instantiate your endpoint, you need to bind it to an address. You
either bind your endpoint to connect (initiate an outgoing connection), or to
listen for an incoming connection. If you are binding an endpoint that is
going to listen, you always need to pass the Inet local port (" i | pt') option
when you send the Bi nd message to your endpoint. If you are binding an
endpoint that is going to connect, you need to pass the Inet local port option
for UDP links, but not for TCP links.

The Inet local port option has two data slots that you specify: a short value,
| net Por t Nunber, and a Boolean value, useDef aul t Port . The

useDef aul t Por t value only applies when you are binding an endpoint to
connect over a UDP link. Assign the | net Por t Nunber a value as shown in
Table 1-1 when sending the local port option with a Bi nd request:

Table 1-1 Local port numbers for binding with Newton Internet Enabler
Transport

Bind type service type Local port number

For TCP The system always selects the local port

connect number, so don’t set this option. You can,

however, send a get (opGet Cur r ent) of
this option with your Bi nd to retrieve the
port number that the system assigned.

Using Newton Internet Enabler 1-17

1-18

CHAPTER 1

Newton Internet Enabler

Table 1-1 Local port numbers for binding with Newton Internet Enabler
(continued)
Transport
Bind type service type Local port number
For ubDP If you specify t r ue for useDef aul t Port,
connect Newton Internet Enabler will select the
local port to use and will return its value in
the option.

If you specify ni | for useDef aul t Port,
you must supply a port number that is not
in use or the Bi nd will fail.

For listen TCP Specify a port number to listen on as
defined by the IETF Assigned Numbers RFC
document.

For listen ubP Specify a port number to listen on as
defined by the IETF Assigned Numbers RFC
document.

Connecting Your Endpoint with Newton Internet Enabler

After instantiating and binding your endpoint, you need to connect it. If you
are using a TCP link, you need to pass the TCP remote socket (" i trs")
option when you send the Connect message to your endpoint. This option
sets the host address with which TCP connects. You can use the domain
name server to get this address, as described in the section “Using the
Domain Name Service Interface” beginning on page 1-27.

If you are using a UDP link, you do not need to pass any options in your
Connect message.

If you are sending the Li st en message to your endpoint, you do not need to
send any options with that message.

Sending Data

You use Newton Internet Enabler to send data just as you would with any
Newton communications tool. You can set up an output specification frame

Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

and send the Qut put message to your endpoint after you have established a
connection.

Note

When you are sending data over the Internet, you usually
need to insert a linefeed (uni codeLF) character in your
data. Most Internet data uses linefeed-carriage return pairs,
while the Newton uses only carriage returns. O

Sending Data With a UDP Connection

For UDP connections, you need to include the Inet UDP destination socket
(" i uds') option to establish the destination of the UDP datagram. Your
UDP output specification must include two flags in the sendFl ags slot: the
kPacket and kEOP flags. For example, the following code segment sends
the string “Hello World!” out over a UDP link.

| ocal mnmyUDPst r eamQut put Spec : = {

form "string,
sendFl ags: ' kPacket +' KECP,
}
| ocal myUDPQOptions : =
[{
| abel : "iuds",
type: " option,
opCode: opSet Current,
resul t: nil,
form "tenpl ate,
dat a:
{
arglist:

[130,43,2,2], [/ host address
7, /1 destination port nunber

Using Newton Internet Enabler 1-19

1-20

CHAPTER 1

Newton Internet Enabler

1.

typelist:
[
"struct,
['array, 'byte, 4],
"short
]
}
H
try

ep:Qutput("Hello World!'", myUDPOpti ons,
my UDPst r eanfut put Spec) ;
onexception |evt.ex.conm do
return : DoDi sconnect();

Sending Data With a TCP Connection

For TCP links, you do not need to include any options in your Qut put
message, nor do you need to specify any sendFl ags values in the output
specification frame. For example, the following code segment sends the
string “Hello World!” out over a TCP link.

| ocal myTCPstreantfut put Spec : = {
form "string,

try

ep: Qutput("Hello World!'", nil, nmyTCPstreanCut put Spec);
onexception |evt.ex.conmi do

return : DoDi sconnect();

The above example calls the application’s DoDi sconnect function if any
communication exception occurs while sending the data.

Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

You can also send expedited data over a TCP link. Expedited data is a single
byte of data that gets sent immediately. The data byte gets inserted in front of
any data on the remote end that has been received but not yet processed. For
example, you might need to send out a break character in the middle of
transmitting a large amount of data. To do so, you use the Inet expedited
data option with your Qut put message. The expedited data option is
described on page 1-67.

See the chapter “Endpoint Interface” in Newton Programmer’s Guide for
detailed information about output specification frames and the Qut put
method.

Receiving Data

You use Newton Internet Enabler to receive data just as you would with any
Newton communications tool. Typically, this means that you set up an input
specification frame and send the Set | nput Spec message to your endpoint.

Note

When you are receiving data from the Internet, you usually
need to strip the linefeed (uni codeLF) characters from your
data. Most Internet data uses linefeed-carriage return pairs,
while the Newton just uses the carriage return. O

Receiving Data With UDP

For UDP links, your input specification frame must include the kPacket
receive flag and must include useEOP: t r ue in the termination slot. In
addition, you can include two options in the r cvOpt i ons slot if you want
to: include the UDP source socket option to retrieve the address of the
datagram sender, and include the UDP destination socket option if you want
to retrieve the exact address to which the packet you received was sent. The
destination address might be other than your local address if the packet was
sent to a broadcast address.

The following code segment receives a datagram packet over a UDP link.

Using Newton Internet Enabler 1-21

CHAPTER 1

Newton Internet Enabler

| ocal stream nput Spec := {

form 'string,

term nation: {useEQP: true},

di scardAfter: 565,

r cvFl ags: kPacket ,

rcvOpti ons: {
| abel : "iuss",
type: 'option,

opCode: opCet Current,
result: nil,
form "tenpl at e,
data: {
arglist:
[
[0,0,0,0], // host address
0, // host port nunber
1,
typelist: kPortAddrStruct,
[

'struct,
["array, 'byte, 4],
"short
]
}
1
i nput Script: func(ep, data, termnator, options)
begi n
/1 do sonmething with data
end,

conmpl etionScript: func(ep, options, result)
begi n

1-22 Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

/1 skip error handling for cancelled requests
if result <> kCommAbortErr then

begi n

print("Error: " &% result);

ep: DoDi sconnect () ;

end;
end,

try

ep: Set | nput Spec(st ream nput Spec) ;
onexception |evt.ex.conmj do

return : DoDi sconnect();

The example input specification frame above tells Newton Internet Enabler
to receive a packet of data from the UDP link and provides two scripts: the

i nput Scri pt function to process normal completion of data reception and
the conpl et i onScri pt function to process unexpected termination of data
reception. In addition, this input spec includes a “get” of the UDP source
socket address, which will be filled in with the IP address of the host that
sent the datagram to your application.

WARNING

If you attempt to send or receive a packet larger than the
value specified in the discard After slot of your input
specification frame, a kConmEr r Buf f er Over f | owerror
results and some data may be lost. The maximum size of a
UDP packet for Newton Internet Enabler is 565. a

Receiving Data With TCP

For TCP links, you do not need to include any options or specify any receive
flags in your input specification frame. For example, the following code
segment receives a carriage return-terminated string from a TCP connection.

Using Newton Internet Enabler 1-23

CHAPTER 1

Newton Internet Enabler

| ocal stream nput Spec := {
form 'string,
term nation: {endSequence: Uni codeCR},

i nput Scri pt: func(ep, data, term nator, options)
begi n
/1 do sonething with data
end,

conpl etionScript: func(ep, options, result)
begi n
/1 skip error handling for cancelled requests
if result <> kConmAbortErr then

begi n
print("Error: " & result);
ep: DoDi sconnect () ;
end;
end,
}
try

ep: Set | nput Spec(streanl nput Spec) ;
onexception |evt.ex.conm do
return : DoDi sconnect();

The example input specification frame above tells Newton Internet Enabler
to terminate input upon receiving a Unicode carriage return character and
provides two scripts: the i nput Scri pt function to process normal
completion of data reception and the conpl et i onScri pt function to
process unexpected termination of data reception.

1-24 Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

WARNING

Do not use the di scar dAf t er slot in your input
specification for TCP connections. If you want to limit the
size of the data packet, specify the byt eCount value in your
termination frame. a

You can also receive expedited data over a TCP link. When expedited data
arrives, your application is immediately notified: the link controller sends an
application event frame. The event Code slot of this event frame has the
value kEvent Tool Speci fi ¢ and the dat a slot is the byte that was
received.

See the chapter “Endpoint Interface” in Newton Programmer’s Guide for
detailed information about input specifications, the Set | nput Spec method,
handling communications events, and other styles of receiving data with an
endpoint.

Disconnecting Your Endpoint

When you have finished using your endpoint, you need to disconnect,
unbind, and dispose of it. The following function shows you an example of
finishing your use of an endpoint.

My App. DoDi sconnect : = func()
begin
if ep then begin// ignore all disconnect errors
try
ep: Di sconnect (true, nil);
onexception |evt.ex.comi do
nil;
try
ep: UnBi nd(nil)
onexception |evt.ex.comj do
nil;

try

Using Newton Internet Enabler 1-25

1-26

CHAPTER 1

Newton Internet Enabler

ep: Di spose()
onexception |evt.ex.conn do
nil;
end;
end;

Releasing Your Link

After your application is completely done with the link, or whenever you
will not be using the link for a long period of time (approximately 15
minutes or longer), you need to release it by calling the | net Rel easeLi nk
function. If no other applications are using the link, the Newton system
software shuts it down.

You need to provide | net Rel easeLi nk with a link ID, a callback function,
and a callback context frame:

I net Rel easelLi nk(linkID, clientContext, clientCallback)

IMPORTANT

The clientContext value that you specify in your

| net Rel easeLi nk call must match the clientContext value
that you previously specified in your call to the

| net G abLi nk function for this link. Otherwise, an error
will occur. a

The status value in your callback is a status frame, as described in the section
“The Link Controller Status Frame” beginning on page 1-45. This frame
contains the current link status value and other information. In your
callback, you can determine the current status of the link after your release of
it has completed, which will depend upon its use by other applications.

Here is an example of a callback function for the | net Rel easeLi nk

function:

nmyApp. Rel easeLi nkCal | back := func(linklD, stat, err)
begi n
if stat.linkStatus = 'idle then

Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

; /1 do sonething here
end;

Power Management and Internet Links

Whenever a link is active or a grablink is in progress, the Newton Internet

Enabler modifies the handling of power-down requests in the following two

ways:

= The standard “power-down when idle” feature of the Newton is disabled.

= If the user tries to power down with the power switch, the Newton
Internet Enabler displays a dialog asking the user if he or she really wants
to drop the link. If the user taps OK, the link is dropped and the Newton

is powered down. If the user taps Cancel, the link is retained and the
Newton remains powered.

Using the Domain Name Service Interface

You can use the Newton Internet Enabler domain name service functions to
translate between host name and Internet address representations. Newton
Internet Enabler provides the following domain name service global
functions:

= the DNSCancel Request s function cancels any pending DNS requests.

= the DNSGet Addr essFr omNane function translates a domain name into
its corresponding Internet address.

s the DNSGet Mai | Addr ess function translates a domain name into the
Internet address for a mail server that serves that domain.

= the DNSGet Mai | Ser ver NanmeFr onDomai nName function translates a
domain name into the domain name for a mail server that serves that
domain.

s the DSNGet NameFr omAddr ess function translates an Internet address
into its corresponding domain nam.

Each of the DNS global functions is described in the section “Domain Name
Service Functions and Methods” beginning on page 1-61.

Using Newton Internet Enabler 1-27

1-28

CHAPTER 1

Newton Internet Enabler

You must supply a clientContext and clientCallback parameter to each of the
DNS functions, just as you do for the link controller functions. However, the
DNS callback functions are called with different parameters than are the link
controller functions.

The callback function for DNSCancel Request s receives no parameters.

The callback function for all of the other DNS functions receives two
parameters: an array of DNS results frames and a result code. Each results
frame contains a number of slots that describe the DNS operation that was
performed. The format of these parameters is described in the section “The
Domain Name Service Callback Function Format” beginning on page 1-50.

For example, the DNSGet Addr essFr omNane function is declared as follows:

DNSGet Addr essFr omNane(addr, clientContext, clientCallback)

An example of a callback for this function is shown here:

nmy App. DNSGet Addr cal | back : = func(results, error)
begi n
if error or length(results) < 1 then
begi n
print("DNS error: " && error);
/1 do sonething with the error
return;
end;

/1 save the resol ved address

myRenot el pAddr : = results[0].resultl PAddress;
end;

Using Newton Internet Enabler

CHAPTER 1

Newton Internet Enabler

Using the Newton Internet Enabler Options

Table 1-2 describes the Newton Internet Enabler options. Each of these
options is described in detail in the section “Newton Internet Enabler
Options” beginning on page 1-67.

Table 1-2

Newton Internet Enabler options

Option name

Expedited data transfer

(iexp')
Physical link identifier
(ilid)

Local port
(ilpt')

Inet profile
(iprf")

TCP remote socket
(itrs')

Description

For expedited
transmission of data
over a TCP link.

To identify the link
ID to use.

To set the local port
number for TCP
binds.

To set the local port
number for UDP
binds.

To retrieve the local
port number used for
TCP or UDP.

To retrieve the local
host and gateway
host IP addresses.

To set the socket to
which TCP connects.

Using Newton Internet Enabler

When to use

Set this option with an Qut put
call to transfer data on a TCP
endpoint.

Set this option at endpoint
instantiation time.

Set this option if you are
binding to do a Li st en (at
endpoint instantiation or bind
time). You don’t need to set this
option for a Connect .

Set this option at endpoint
instantiation or bind time.

Retrieve the value of this option
when you are connecting,
sending, or receiving data.

At any time after the link is
established.

Set the value of this option at
before using the connection (at
endpoint instantiation, bind, or
connect time).

1-29

CHAPTER 1

Newton Internet Enabler

Table 1-2

Newton Internet Enabler options (continued)

Option name

Transport service type

("itsv')
UDP destination socket
("iuds')

UDP source socket
("iuss')

Description

To retrieve the sender
address for data
received over a TCP
link.

To set the transport
service type (TCP or
UDP).

To set the destination
address for data
being sent over a
UDP link.

To retrieve the
destination address
for data received
over a UDP link.

To retrieve the source
address for data
received over a UDP
link.

When to use

Get the value of this option
when listening for data on a
TCP connection.

Set this option at endpoint
instantiation time.

Set this option when sending
data with a UDP connection.

Get this option when listening
for data on a UDP connection.

Get the value of this option
when listening for data on a
UDP connection.

Newton Internet Enabler Interface Reference

This section describes the constants, data types, methods, and functions that
you use with Newton Internet Enabler.

Constants

This section describes the constants that you use with Newton Internet

Enabler.

1-30 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Status Code Constants

The Newton system software uses the following status code symbols to
convey the status of a Newton Internet Enabler operation:

‘idle

"“initializing

connecti ng

| ogin

connect ed

Constant descriptions
"idle No link is established.

"“initializing Setting up for connecting.

' connecting In the process of connecting.
"login Performing login script.
' connect ed The link is established.

Transport Service Type Constants

You can use the following constants to specify transport service types in Inet
tool option requests:

constant kTCP := 1,

constant kUDP := 2;

Constant descriptions

kTCP Use TCP transport service.
kUDP Use UDP transport service.

Link Controller Error Codes

The high-level link controller can generate the errors described in this section.

const ant kil net Err NoSuchLi nkl D = -60501;
constant Kkl net ErrLi nkDi sconnect ed = -60504;
const ant Kkl net Err Connect Li nkFai | ed = -60505;

Newton Internet Enabler Interface Reference 1-31

CHAPTER 1

Newton Internet Enabler

Constant descriptions
kil net Err NoSuchLi nkl D
The specified link identifier does not exist.

kl net ErrnLi nkDi sconnect ed
The link has been disconnected.

kl net Err Connect Li nkFai | ed
The link could not connect.

DNS Error Codes

This section describes the error codes that the DNS tool can generate.

const ant kDNSErr NoAnswer FoundYet -60751;
constant KDNSErr I nternal Err -60752;
const ant kDNSErr NameSynt axErr -60791;
const ant kDNSErr NoNaneSer ver - 60794,
const ant kDNSEr r Aut hNaneEr r -60795;
const ant kDNSEr r NoAnswer Er r -60796;
const ant KDNSErr Nonexi st ent Donai n -60797;
constant kDNSErr Qut O Menory -60798;
const ant kDNSEr r Coul dNot Cont act Ser ver - 60800;
const ant kDNSErr NoServer sAvai | abl e -60801;
const ant kDNSErr Request For mat Err -60802;
constant KkDNSErr Serverlnternal Err -60803;
const ant KDNSErr Ser ver Not | npl enent ed -60804;
constant kDNSErr Ser ver Ref used - 60805;
const ant KkDNSErr UnknownSer ver Err - 60806;
const ant kDNSErr NoResponseFr onser ver - 60814,

constant kDNSErr NoResponseFr omAnySer ver - 60815;

1-32 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Constant descriptions
k DNSEr r NoAnswer FoundYet
The answer for the question has not yet been found.
kDNSErr I nt ernal Err
Internal DNS tool error.
kDNSEr r NameSynt axEr r
The name in the DNS request is not valid.

k DNSEr r NoNaneSer ver
The option specification does not contain a name server.
KDNSEr r Aut hNaneEr r
The domain does not exist.
kDNSEr r NoAnswer Er r
No answers available for request; this could be due to a
domain that does not exist.
kDNSEr r Nonexi st ent Domai n
The domain name does not exist.
kDNSEr r Qut O Menror y
DNS tool out of memory.
kDNSEr r Coul dNot Cont act Ser ver
Could not connect to the current DNS server
kDNSEr r NoSer ver sAvai | abl e
Could not connect to any of the listed DNS servers.
kDNSEr r Request For mat Er r
The DNS server did not like the format of the request,
which could indicate an invalid domain name.
kDNSErr Server I nternal Err
An internal error occurred in the DNS server.
kDNSEr r Ser ver Not | npl enent ed
The DNS server does not support the specified type of
request.
kDNSEr r Ser ver Ref used
The DNS server refused to answer the client’s query.
kDNSEr r UnknownSer ver Err
The DNS server returned an error code that is not
recognized.

Newton Internet Enabler Interface Reference 1-33

1-34

CHAPTER 1

Newton Internet Enabler

kDNSEr r NoResponseFr onfser ver
No response from the current server

kDNSEr r NoResponseFr omAny Ser ver
No response from any of the available DNS servers.

Newton Internet Enabler Lower-Level Tool Errors

The Newton Internet Enabler lower-level erors are separated into five
sections:

» Inet tool errors

= application-related errors

s UDP errors

Inet Tool Errors

This section describes the errors that the built-in Inet tool can generate.

Note

Some of the errors in this section are internal
communications stack configuration or operation errors. If
you receive one of these errors, please contact the Newton
Developer Technical Support team. O

const ant kl net Tool Err Bi ndFai | ed -60001;
const ant kl net Tool Err | PBi ndFai | ed -60002;
const ant kl net Tool Er r PushModul e ;= -60004;

constant klnetTool Errllink = -60005;
const ant Kkl net Tool Err Net Acti vat eReq = -60006;
const ant Kkl net Tool Err TCPBi nd = -60007;
constant Kkl net Tool Err Get Request = -60008;
const ant Kkl net Tool Er r Put Request = -60009;
const ant Kkl net Tool Err Connect = -60010;

constant klnetTool ErrDl Attach .= -60011;
constant Kkl net Tool ErrBi nd -60012;
const ant Kkl net Tool Err QpenLi nk -60013;

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant

kl net Tool Err Unl i nk

kl net Tool Er r Qut O Phase

kl net Tool Er r AddRout e

kl net Tool ErrLi sten

kl net Tool Er r Li nkNot Cpened

kl net Tool Err Dri ver Not Opened
kl net Tool Err St r eanNot Opened
kl net Tool Err Bi ndReqFai | ed

kl net Tool Er r ConnResReqFai | ed

Newton Internet Enabler Interface Reference

-60014;
-60015;
- 60016;
-60017;
-60018;
-60019;
-60020;

= -60021,

-60022;

1-35

CHAPTER 1

Newton Internet Enabler

Constant descriptions
Kl net Tool Err Bi ndFai | ed

The bind operation failed at the lowest level.
kl net Tool Err | PBi ndFai | ed

The IP layer bind operation failed.
Kl net Tool Err PushModul e

Internal communications stack configuration error.
kI net Tool Errllink

Internal communications stack configuration error.
kl net Tool Er r Net Act i vat eReq

Internal communications stack configuration error.
kI net Tool Er r TCPBIi nd

The TCP layer bind operation failed.
kl net Tool Err Get Request

The get request resulted in an error.
kl net Tool Err Put Request

The put request resulted in an error.
Kl net Tool Err Connect

The connect request resulted in an error.
kI net Tool Err Dl Attach

Internal communications stack configuration error.
Kl net Tool ErrBi nd

Internal communications stack configuration error.
kl net Tool Err OpenLi nk

Internal communications stack configuration error.
Kl net Tool ErrUnli nk

Internal communications stack configuration error.

kl net Tool Err Qut O Phase
Internal communications stack configuration error (the
stack layers are out of sync).

Kl net Tool Er r AddRout e
Internal communications stack configuration error.

kl net Tool ErrListen
Internal communications stack configuration error.

1-36 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

kl net Tool Err Li nkNot Opened
Internal communications stack configuration error.

kl net Tool Err Dri ver Not Opened
Internal communications stack configuration error.

kl net Tool Err St r eanNot Opened
Internal communications stack configuration error.

kl net Tool Err Bi ndReqgFai | ed
The bind request failed.

kl net Tool Er r ConnResRegFai | ed
Internal communications stack configuration error.

Application-related Errors

This section describes the Inet errors that are related to your application.

Note

Some of the errors in this section are internal
communications stack configuration or operation errors. If
you receive one of these errors, please contact the Newton
Developer Technical Support team. O

const ant kil net Tool Err MemAl | oc = -60023;
const ant Kkl net Tool Err MsgType .= -60024;
const ant Kkl net Tool Err NoDevi ce = -60025;
const ant kl net Tool Errl | egal GpenOnStream = -60026;
const ant Kkl net Tool Err Regl nl nval i dSt at e = -60027;
constant klnetTool ErrPrimtiveTooSnal l = -60028;
constant Kkl netTool ErrPrimtiveQut O Range = -60029;
constant klnetTool ErrPrimtiveOnlnvalidStr = -60030;
const ant Kkl net Tool Err MessageToolLong .= -60031;
const ant Kkl net Tool Err Net wor KAl r eadyActi ve = -60032;
const ant Kkl net Tool Err Net wor kNunber | nval i d := -60033;
const ant Kkl net Tool Err Unsupport edl oct| = -60034;
const ant Kkl net Tool Err St reamAl r eadyAtt ached = -60035;
const ant Kkl net Tool Er r UnknownMux| ndex = -60036;
Newton Internet Enabler Interface Reference

1-37

1-38

CHAPTER 1

Newton Internet Enabler

const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant

kl net Tool Er r Net wor kl sl nacti ve

kl net Tool Err BogusConnecti on

kl net Tool ErrinvalidBillingMode

kl net Tool Err NoTri gSel ect edl nAl arm
kl net Tool Errlnval i dTri gSi ze

kl net Tool Errl nval i dConnect i onRef
kl net Tool Err || egal Mdat al nPrim

kl net Tool Err M ssi ngMlat al nPri m
kl net Tool Errlnval i dSegnment edPri m
kl net Tool Err I nval i dNPI Ver si on

kl net Tool Errl nval i dAddr ess

kl net Tool Er r Qut OF TCPPor t Nunber s
kl net Tool Err Socket | nUse

kl net Tool Err Reser vedPor t Nunber

kl net Tool Er r ExpDat aNot Support ed

Newton Internet Enabler Interface Reference

- 60037;
- 60038;
-60039;
- 60040;
-60041;
-60042;
- 60043;

= - 60044;

- 60045;

= -60046;

-60047;
- 60048;
- 60049;
- 60050;
-60051;

CHAPTER 1

Newton Internet Enabler

Constant descriptions
kl net Tool Err MemAl | oc
Requested memory could not be allocated.
kl net Tool Err MsgType
Internal communications stack configuration error.

kl net Tool Err NoDevi ce

Internal communications stack configuration error:

stream available.

kl net Tool Errl | egal OpenOnSt r eam
Internal communications stack configuration error.

kl net Tool Err Regl nl nval i dSt at e

Internal communications stack configuration error.
kl net Tool ErrPrimtiveTooSnal |

Internal communications stack configuration error.
kl net Tool ErrPrim tiveQut Of Range)

Internal communications stack configuration error.
kl net Tool ErrPrimtiveOnlnvalidStr

Internal communications stack configuration error.
kl net Tool Er r MessageToolLong

Internal communications stack configuration error.
kl net Tool Er r Net wor kAl r eadyAct i ve

Internal communications stack configuration error.
kl net Tool Err Net wor kNunber I nval i d

Internal communications stack configuration error.
kl net Tool Er r Unsupport edl oct |

Internal communications stack configuration error.
kl net Tool Err St reanAl r eadyAt t ached

Internal communications stack configuration error.
kl net Tool Er r UnknownMux| ndex

Internal communications stack configuration error.
kI net Tool Err Net wor kl sl nactive

Internal communications stack configuration error.

kl net Tool Err BogusConnect i on
Internal communications stack configuration error.

Newton Internet Enabler Interface Reference

no

1-39

CHAPTER 1

Newton Internet Enabler

kl net Tool ErrinvalidBillingMWde
Internal communications stack configuration error.

kl net Tool Err NoTri gSel ect edl nAl arm
Internal communications stack configuration error.

kl net Tool Errlnval i dTri gSi ze

Internal communications stack configuration error.
kIl net Tool Errl nval i dConnect i onRef

Internal communications stack configuration error.
kl net Tool Err || egal Mdat al nPrim

Internal communications stack configuration error.
kl net Tool Er r M ssi ngMlat al nPri m

Internal communications stack configuration error.
kl net Tool Err I nval i dSegrment edPri m

Internal communications stack configuration error.
Kl net Tool Errl nval i dNPI Ver si on

Internal communications stack configuration error.
Kl net Tool Errlnval i dAddr ess

Internal communications stack configuration error.
Kl net Tool Err Qut O TCPPor t Nunber ss

Internal communications stack configuration error.
Kl net Tool Err Socket | nUse

Internal communications stack configuration error.
kKl net Tool Er r Reser vedPort Nunmber

Internal communications stack configuration error.

kl net Tool Er r ExpDat aNot Support ed
Internal communications stack configuration error.

UDP Errors

This section describes the UDP-related errors that the built-in Inet tool can
generate.

1-40 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Note

Some of the errors in this section are internal
communications stack configuration or operation errors. If
you receive one of these errors, please contact the Newton
Developer Technical Support team. O

const ant Kkl net Tool Err Redundent Request = -60052;
const ant Kkl net Tool Err Unexpect edDLPri m ;= -60053;
const ant Kkl net Tool Err Unexpect edTPI Pri m = -60054;
const ant Kkl net Tool Err Unexpect edNPI Pri m .= -60055;
const ant Kkl net Tool Er r UnknownTPI Er r or Code = -60056;

Constant descriptions
kl net Tool Er r Redundent Request

Internal communications stack configuration error.
kl net Tool Er r Unexpect edDLPri m

Internal communications stack configuration error.
kl net Tool Er r Unexpect edTPI Prim

Internal communications stack configuration error.
kl net Tool Er r Unexpect edNPI Pri m

Internal communications stack configuration error.

kI net Tool Er r UnknownTPI Er r or Code
Internal communications stack configuration error.

Inet Tool-Specific Errors

This section describes the errors that relate to the Inet tool disconnecting
unexpectedly.

constant klnetErrStrean noperative .= -60057;

Constant descriptions

kl net Err St reaml noperative
The communications connection shut down due to a
fatal error.

Newton Internet Enabler Interface Reference 1-41

CHAPTER 1

Newton Internet Enabler

Newton Internet Enabler Events

The Newton Internet Enabler generates some events that you can handle in
the Event Handl er method of your endpoints. The Event Handl er

method, which is described in the chapter “Endpoint Interface” of Newton
Programmer’s Guide, receives a single parameter, which is an event frame. The
slots of the event frame are as follows:

event Code An integer event code.
data An integer representing event data.
serviceld A string representing the communication tool that

originated the event. For example, "mods" identifies the
modem tool.

time An integer representing the time when the event
occurred. This is the number of ticks since the system
was last restarted, not including time when it was
turned off.

When the Newton Internet Enabler sends an event to your application, the
servi cel dis'i net'. The event codes and data that Newton Internet
Enabler can send are shown in Table 1-3.

Table 1-3 Newton Internet Enabler Application Events
Event code Data value Description
kEvent Tool Speci fic An error code; currently, this is Sent to your endpoint
always the value: when the connection
kl net Err Stream noperative becomes inoperative due
to a fatal error.
kEvent Tool Speci fic A byte of data received for the Sent to your endpoint
application. when an expedited data
byte arrives. This is only
applicable to endpoints
using TCP.
kCommilool Event Di sconnect ed none Sent to your endpoint if the

1-42

remote side disconnects a
TCP connection.

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Since the event Code slot has the same value (kEvent Tool Speci fi c)in
the first two cases shown in Table 1-3, you must check the value of the data
slot to determine what has happened:

= if the dat a slot value is less than zero, you know that your connection has
closed down due to an error. The dat a slot value is the error code.

= otherwise, you know that your application has just received a byte of
expedited data. The dat a slot value is the byte of expedited data that has
just been received.

For more information on receiving expedited data, see the section “Receiving
Data With TCP” beginning on page 1-23.

Handing TCP Disconnect Events

If the remote sides disconnects a TCP connection, your endpoint generates a
disconnect event. However, you might still need to process data that has
been received and buffered prior to the disconnect. To process the buffered
data, you need to post input specifications until you get the error

kConmmEr r Not Connect ed.

Note

You must disconnect and unbind your endpoint event if you
receive a disconnect (kCommilool Event Di sconnect ed)
event. O

Newton Internet Enabler Function Parameter Information

Many of the Newton Internet Enabler functions use one or more of the
parameter types described here.

The Link Identifier Parameter

The link identifier parameter, which is used by a number of the link
controller functions, defines the link that you want to use for a link controller
operation. If you specify ni | for the link identifier, Newton Internet Enabler
substitutes the default link identifier.

Newton Internet Enabler Interface Reference 1-43

1-44

CHAPTER 1

Newton Internet Enabler

Users define the default link ID to use in the Internet Setup application.
Whenever you successfully call the | net Gr abLi nk function, the link ID that
you supplied to that function will automatically become the default link ID.
Under most circumstances, you should specify ni | as the value of the link
identifier to use the default link ID as established by the user.

The Client Context Parameter

The client context parameter, which is used by a number of the link
controller functions, is a reference to a frame. The referenced frame must
contain the callback function that is defined in the client callback parameter.

Note

You must provide the same client context frame to some of
the Newton Internet Enabler functions that are called in
pairs. For example, the | net Cancel Li nk function can only
cancel a link if the clientContext parameter that you pass into
| net Cancel Li nk matches the clientContext parameter that
you previously passed into | net Gr abLi nk. O

The Client Callback Parameter

The client callback parameter, which is used by a number of the Newton
Internet Enabler functions, is the symbol for a function. This function must
be defined in the frame that is defined by the client context parameter.

In most cases, the Newton system software calls your callback function upon
completion of its operations. In some cases, notably the | net Gr abLi nk
function, the Newton system software calls your callback function repeatedly
during the operation to keep you informed of the status.

If you are calling a link controller function, the declaration of your callback
function must match the specification described in the next section, “The
Link Controller Callback Function Format.”

If you are calling a domain name service function, the declaration of your
callback function must match the specification in the section “The Domain
Name Service Callback Function Format” beginning on page 1-50.

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

The Link Controller Callback Function Format

The callback function that you supply to each link controller call must be
declared with the following format:

func cal | BackFcn(linkld, statusFrame, err) ;

The system software calls cal | BackFcn after the Newton Internet Enabler
function has completed.

statusFrame A frame with the format shown in the next section, “The
Link Controller Status Frame.” The statusFrame provides
information on the current state of the link.

err The operation result. If the value is ni | , the operation
was successful; otherwise, the value is one of the error
codes shown in the section “Newton Internet Enabler
Lower-Level Tool Errors” on page 1-34.

The Link Controller Status Frame

The link controller status frame contains a slot that conveys link status
information to you. This frame is designed to work closely with views based
on the pr ot oSt at usTenpl at e view, which is described in the Transport
Interface chapter of Newton Programmer’s Guide.

Note that the status frame can have other slots in it; however, only the
linkStatus slot is available for application use.

Slot descriptions

linkStatus A symbol that describes the current status of the link.
This is one of the values described in the section “Status
Code Constants” on page 1-31.

The following is an example of a link controller status frame:

{

l'i nkSt atus: ' connected

Newton Internet Enabler Interface Reference 1-45

CHAPTER 1

Newton Internet Enabler

The Link Entry Information Frame

The Newton Internet Enabler accesses link entry information that is stored in
an internal soup. Each entry in this soup defines link configuration
information and is represented by a link entry information frame. An
example of a link entry information frame follows:

{
l'i nkl D

t ags:

set upNane:
physi cal Layer :

i nkLayer:

| ocal Addr ess:

| ocal Addr essFi xed:
gat ewayAddr ess:

gat ewayAddr essFi xed

phoneNunber :

user Nane:
passWor d:
dnsSer ver Addr ess:
def aul t Donai n:

[ogi nl nf o:

1-46

0,

['Inet],

"My dial-up",

' modem

' PPP,

[205, 149, 167, 179],
nil,

[204, 156, 128, 1],
nil,

"(408) 555-1234",

[204, 156, 128, 1],
{interpreterSynbol: 'default,
| ogi nScri pt Ti neout: 60,
| ogi nlnstructions: [
{type: 'waitFor, data: "ogin:"},

{type: 'userNane},

{type: 'sendCR},

{type: 'waitFor, data: "word"},
{type: 'password},

{type: 'sendCR},

{type: 'waitFor, data:"ing.
] y

"1,

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-47

1-48

CHAPTER 1

Newton Internet Enabler

Slot descriptions
linkID

tags
setupName
physicalLayer
linkLayer

local Address

local AddressFixed
gatewayAddress

gatewayAddressFixed

phoneNumber
userName

passWord

dnsServerAddress
defaultDomain
loginInfo

The (integer) ID for this link. This ID is generated by the
link controller.

Reserved for internal use. Do not modify.
The name of this link setup entry.

The symbol for which physical layer to use when
connecting. Use either ' mbdemor ' seri al.

The symbol for which link-layer protocol to use for this
link. Use either ' PPPor' SLI P,

Optional. The manually-entered local IP address of the
Newton.

Tr ue if a fixed local address is required, ni | if not.

Optional. The IP address of the gateway host to which
the Inet tool connects.

Tr ue if a fixed host address is required, ni | if not.
Optional. The phone number for the modem to dial.

Optional. The user name to use as the account name for
login scripts.

Optional. The password to use as the account password
for login scripts.

The DNS server IP address.

Optional. The default DNS domain

A frame specifying the login information. This frame
contains the following three slots:

interpreterSymbol A symbol identifying which
interpreter to use. Use ' def aul t
for the default interpreter.

loginScriptTimeout The number of seconds to wait for
input.
loginInstructions An array of frames interpreted by

the default interpreter. The frames
are described in the next section.

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Login Script Frames

The default login script interpreter accepts an array of frames, each of which
must have a' t ype slot that specifies the type of information contained in
the frame. Table 1-4 shows the frame types that you can use in your login

Frame format

{type:
dat a:

{type:
dat a:

{type:
{type:

{type:

scripts.
Table 1-4 Login script frames
Description
'wai t For, Waits for the string in the dat a slot. The string can

"data to wait for"}

'send,
"data to send"}

' sendCR}

' pause, data:1}

' user Nane}

contain any Unicode character. The string is
converted to ASCII using the standard Macintosh
encoding.

Sends the string specified in the dat a slot. The
string can contain any Unicode character. The string
is converted to ASCII using the standard Macintosh
encoding. Note that a newline is not automatically
sent.

Sends a newline (0x10).

Pauses the input script for the number of seconds
specified in the dat a slot.

Sends the string in the user Name slot of the link
entry information frame. Note that a newline is not
automatically sent.

Newton Internet Enabler Interface Reference 1-49

CHAPTER 1

Newton Internet Enabler

Table 1-4 Login script frames (continued)
Frame format Description
{type: ' password} Sends the string in the passwor d slot of the link

entry information frame. Note that a newline is not
automatically sent.

{type: 'l ocal Address} Waits for and reads in an IP address. The value of
the link entry frame’s | ocal Addr ess slot is
overridden with this address value. Use with SLIP
connections to obtain the dynamically assigned
address.

{type: ' gat ewayAddress} Waits for and reads in an IP address. The value of
the link entry frame’s gat ewayAddr ess slot is
overridden with this address value. Use with SLIP
connections to obtain the dynamically assigned
address.

The Domain Name Service Callback Function Format

The callback function for the DNSCancel Request s function does not
receive any parameter values.

The callback function that you supply to each of the other domain name
service calls must be declared with the following format:
func cal | BackFcn(resultsArray, resultCode) ;

The system software calls cal | BackFcn after the Newton Internet Enabler
function has completed.

resultsArray An array of zero or more DNS results frames. The
format of a DNS results frame is described in the next
section, “The DNS Results Frame.”

resultCode One of the result codes described in the section “DNS
Error Codes” on page 1-32.

1-50 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

The DNS Results Frame

The DNS results frame contains a number of slots that describe the DNS
operation. Different slot values are filled in by each of the DNS operations.
The possible slot types are shown here:

{
type resultType,
t ar get Dormai nNane domainNameString,
resul t Domai nNane domainNameString,
tar get | PAddr ess addressArray,
resul t | PAddr ess addressArray

}

Each results frame contains a t ype slot and at least one result slot. Most
results frames contain the t ar get Domai nNane slot; however, this is not
guaranteed. Table 1-5 shows which slot is guaranteed to be valid for each
DNS operation.

Table 1-5 Result slots for each DNS operation

DNS operation Results frame slot
DNSGet Addr essFr omNane resul t | PAddr ess
DNSGet NaneFr omAddr ess resul t Domai nName
DNSGet Mai | Ser ver NaneFr omDonmai nName resul t Domai nName
DNSGet Mai | Addr essFr omNane resul t | PAddr ess

As you can see in Table 1-5, if the operation results in a domain name, the
results frame contains one or more r esul t Dormai nNane slots. If the
operation results in an IP address, the results frame will instead contain one
or more r esul t | PAddr ess slots.

For example, the DNSGet Addr essFr omNare function returns a results array
that looks something like this:

Newton Internet Enabler Interface Reference 1-51

CHAPTER 1

Newton Internet Enabler

[{
type kDNSAddressType,

t ar get Dormai nNane " new on. appl e.com ",
resul t | PAddress [155, 227, 54, 3]
Pl

In contrast, the DNSGet NaneFr omAddr ess function returns a results array
that looks something like this

[{

t ype kDNSDomai nNaneType,

t ar get Domai nNane " newt on. appl e.com ",
resul t1 PAddress [155, 227, 54, 3]

H]

Some DNS operations return a results array that contains more than one
results frame. For example, a mail exchange operation can generate multiple
mail exchange results frames.

The value types for each frame type are described below.

Slot descriptions

resultType The type of result contained in the frame. This is either
kDNSAddr essType or kDNSDormai nNaneType.

If the value is KDNSAddr essType, the operation that
generated this result frame resulted in an IP address; for
example, the DNSGet Addr essFr omName function.

If the value is kDNSDormai nNaneTy pe, the operation
that generated this result frame resulted in a domain
name string; for example, the

DNSGet NanmeFr omAddr ess function.

domainNameString The domain name used or resulting from the operation.
For example " newt on. appl e. com ".

addressArray The IP address, specified as an array of four bytes. For
example, [155, 227, 54, 3] .

1-52 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Link Controller Functions and Methods

This section describes the link controller functions and methods.

InetAddNewLinkEntry
linkID | net AddNewLi nkEnt r y(newLinkInfo)

Installs a new link information entry on the user’s Newton and returns the
ID assigned to the entry.

newLinkInfo Alink entry information frame, as described in “The
Link Entry Information Frame” on page 1-46.

You can use the | net AddNewLi nkEnt ry function to install a new link
information entry in the Internet setup soup. The new link entry is created
using the information supplied in the newLinkInfo frame. A new linkID is
allocated for the entry. That link ID is returned as the function value.

InetCancelCurrentRequest

I net Cancel Current Request (linkld)
Cancels any active request on the specified link.

linkId The ID of the link that you want to cancel. Specify ni |
to use the default link ID.

The | net Cancel Curr ent Request function cancels any active requests on
the link specified by linkld.

InetCancelLink

I net Cancel Li nk(linkld, clientContext, clientCallback)
Cancels an | net Gr abLi nk operation that is in progress.

linkID The ID of the link that you want to cancel. Specify ni |
to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

Newton Internet Enabler Interface Reference 1-53

1-54

CHAPTER 1

Newton Internet Enabler

clientCallback The client callback function, as described in the section
“The Link Controller Callback Function Format” on
page 1-45.

The I net Cancel Li nk function cancels an | net Gr abLi nk request that is in
progress.

The | net Gr abLi nk function is described on page 1-58.

InetDisconnectLink

I net Di sconnect Li nk(linkld, clientContext, clientCallback)
Disconnects a link no matter how many clients are using the link.

linkID The ID of the link that you want to cancel. Specify ni |
to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Link Controller Callback Function Format” on
page 1-45.

The I net Di sconnect Li nk function disconnects a link directly without

needing to close all of the applications that are using it.

WARNING

The | net Di sconnect Li nk function is intended for use

only by special purpose utility programs. Do not use this

function unless you are certain that it the right thing to do.
A

InetDisplayStatus

statusView | net Di spl aySt at us(linkld, statusView, status)

Displays status information about a link on the user’s Newton screen.

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

linkID The ID of the link for which you want to display status
information. This must be an active link. Specify ni | to
use the default link ID.

statusView The view to use for displaying the status. The view

must be based on pr ot oSt at usTenpl at e.

If you provide a template, | net Di spl ay St at us opens
the view for your. If you supply ni | as the value of this
parameter, | net Di spl ay St at us creates and opens a
new view for you.

status A status frame, such as the one passed to your
I net GrabLi nk callback function. The format of this
frame is described in the section “The Link Controller
Status Frame” beginning on page 1-45.

If you supply ni | as the value of this parameter and
statusView isnot ni | , I net Di spl aySt at us removes
the status display from the screen.

The | net Di spl aySt at us function displays link status information on the
Newton screen. The view also contains a Stop button that the user can tap to
cancel a grab link operation. If the grab gets cancelled, you can keep the view
open and continue to display your own application status. To do so, follow
these steps:

1. Set the value of the appSynbol slot in the status view to reference your
application. For example:

my St at usVi ew. appSynbol : = kAppSynbol ;

2. Implement a cancel script in your base view. When the user taps the Stop
button, the status view calls a' Cancel Scri pt (reason) scriptin your
base view. You can implement this script to respond to the stop button.

The | net Di spl aySt at us function returns the view that it used to display
the status. You can use this for future calls to this function.

Newton Internet Enabler Interface Reference 1-55

1-56

CHAPTER 1

Newton Internet Enabler

Note

To create a new status view for display on the screen, specify
nil as the value of the statusView parameter. Newton Internet
Enabler will create the view and return it as the function
value.

To remove the status view from the screen, specify ni | as

the value of the status parameter and specify a view (not
ni |) as the value of the statusView parameter. O

InetGetAllLinksStatus

linksStatusFrame | net Get Al | Li nksSt at us()

The I net Get Al | Li nksSt at us function returns a frame that specifies the
status of all known links. If there are no available links, the

I net Get Al | Li nksSt at us function returns ni | or a frame containing
empty arrays.

WARNING

Since the user can add or remove available links at any time
by using the Internet Setup application, you must be careful
about caching the results of the | net Get Al | Li nksSt at us
function. a

The linksStatusFrame contains three slots, each of which is an array with one
entry for each available link.

Slot descriptions
LinkIDS An array that contains the ID of each available link.

statuses An array that contains the status code for each available
link. Each entry in this array is a status code value, as
described in the section “Status Code Constants” on
page 1-31.

names An array that contains the name for each available link.
Each entry in this array is the string name that the user
specified when defining the link configuration in the
Internet Setup application.

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

The following is an example of the linksStatusFrame:

{
Linkl Ds [1, 2, 3]
statuses ['connected, 'idle, "idle],
nanes ["Best", "Scruznet", "Conpuserve"]
}
Note

The | net Get Al | Li nksSt at us function is a synchronous
call that raises an exception if it encounters any problems. O

InetGetDefaultLinkID
linkID | net Get Def aul t Li nkl D()

The | net Get Def aul t Li nkl D function returns the ID of the default link.
This is the ID that the Newton system software uses when you specify ni |
as the value of the linkID parameter for one of the other link controller
functions.

InetGetLinkEntry
linkEntry | net Get Li nkEnt r y(linkID)

Returns the link entry information frame associated with linkId.
linkID The ID of the link. Specify ni | to use the default link ID.

The | net Get Li nkEnt ry function returns the link entry information frame
for the link /inkID. For information about the format of link entry
information frames, see “The Link Entry Information Frame” on page 1-46.

InetGetLinkStatus
I net Get Li nkSt at us(linkID)

Returns the status of a link.

linkID The ID of the link. Specify ni | to use the default link ID.

Newton Internet Enabler Interface Reference 1-57

1-58

CHAPTER 1

Newton Internet Enabler

The | net Get Li nkSt at us function returns the status of the link linkID. The
status value is one of the status code constants, as described in the section
“Status Code Constants” on page 1-31..

Note

The I net Get Li nkSt at us function is a synchronous
function that raises an exception if it encounters any
problems. O

InetGrabLink

| net Gr abLi nk(linkld, clientContext, clientCallback)
Provides access to a link.

linkID The ID of the link that you want to access. Specify ni |
to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Link Controller Callback Function Format” on
page 1-45.

The | net Gr abLi nk function attempts to access a link and calls your
callback function with the status and error code for that operation.

The Newton system software calls your clientCallback function repeatedly
while attempting to connect, supplying you with the current status. The

| net Gr abLi nk operation does not complete until the returned status is
' connect ed.

If the | net Gr abLi nk operation fails, the er r parameter to the clientCallback
function indicates the reason. Otherwise, the value of the er r parameter is
nil.

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

InetOpenConnectionSlip

view | net OpenConnect i onSl i p(linkld, clientContext, clientCallback)

Opens a connection slip for the link. The user can change link information
with the slip.

linkID The ID of the link for which you want to open a
connection slip. Specify ni | to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientSlipCallback A client callback function that receives a single
parameter. This parameter is a symbol with one of the
following values: ' connect or' cl ose.

The | net QpenConnect i onSl i p function displays a connection slip on the
screen to allow the user to change to a different link or override the current
worksite or phone number information. The user can complete the slip by
tapping the Connect button or by tapping the Close box.

Your clientCallback function is called after the slip has been completed by the
user. If your callback is called with the ' cl ose symbol, it means that the
user has canceled the connection by tapping the Close box in the slip. If your
callback is called with the ' connect symbol, it means that the user has
tapped the Connect button in the slip and that you should call

I net Gr abLi nk to proceed with the connection process.

If the link is already open, | net OpenConnect i onSl i p does not open a
slip. In this case, | net OpenConnect i onSl i p calls your callback function
with ' connect, which means that you can proceed as if the user had tapped
the Connect button.

The | net QpenConnect i onSl i p function returns the open slip view or nil
if it does not open a slip.

Newton Internet Enabler Interface Reference 1-59

1-60

CHAPTER 1

Newton Internet Enabler

IMPORTANT

Apple recommends that you call

I net QpenConnecti onSl i p before calling | net Gr abLi nk
to allow users the opportunity to change the connection
settings. a

InetReleaseLink

I net Rel easelLi nk(linkld, clientContext, clientCallback)
Relinquishes access to a link.

linkID The ID of the link that you want to release. Specify ni |
to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Link Controller Callback Function Format” on
page 1-45.

The | net Rel easeLi nk function releases your access to a link. If the link
does not have any additional clients, it may close down.

Note

If the user has enabled a release link timeout in the link
entry, then | net Rel easelLi nk does not necessarily drop
the link, even if it does not have any additional clients.
When the count goes to zero and a release link timeout has
been enabled, the Newton Internet Enabler software
displays an indicator on the user’s screen (a blinking star at
the top center of the screen). The user can tap that indicator
to open a slip that can be used to release the link. If another
| net Gr abLi nk call is issued for the link before the timeout
completes, the link is not released. O

Your clientCallback function is called after the link has been released. The
status of the link at that time will depend on its use by other applications.

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

IMPORTANT

Apple recommends that you call | net Rel easeLi nk
whenever you no longer need to perform communications
over the link for fifteen minutes or longer. a

InetSetDefaultLinkID
I net Set Def aul t Li nkl D linkld)
Establishes which link is the default link.

linkID The ID of the link that you want to become the default
link ID.

The I net Set Def aul t Li nkl D function establishes linkId as the default link
ID. The Newton Internet Enabler software uses the default link ID whenever
you pass ni | as the value of a linkID parameter. For more information about
the default link ID, see “The Link Identifier Parameter” on page 1-43.

Domain Name Service Functions and Methods

This section describes the functions and methods that you can use to access
the domain name service.

DNSCancelRequests

DNSCancel Request s(clientContext, clientCallback)
Cancels outstanding domain name server requests.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function. This function is called with
no parameters, in contrast to the other DNS callback
functions.

The DNSCancel Request s function cancels any outstanding domain name
service requests that have been made by the client with context clientContext.

Newton Internet Enabler Interface Reference 1-61

1-62

CHAPTER 1

Newton Internet Enabler

You must supply the same value for clientContext as you did when you made
the DNS request.

Newton Internet Enabler will not call the callback functions for any DNS
requests that get cancelled.

WARNING

The callback function that you supply to
DNSCancel Request s does not have any parameters. This
is different from the other DNS callback functions. O

DNSGetAddressFromName

DNSCet Addr essFr omNane(nameString, clientContext, clientCallback)
Translates a domain name into its corresponding Internet address.
nameString An Internet domain name string.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Domain Name Service Callback Function Format”
on page 1-50.

The DNSGet Addr essFr omNane function resolves the domain name

nameString into an IP address. DNSGet Addr essFr omNane fills in the

resul t | PAddr ess slot in a DNS results frame, as described in the section

“The Domain Name Service Callback Function Format” beginning on

page 1-50, and calls your callback function with the result code and that

frame as parameters. The following is an example of a results frame for the

DNSGet Addr essFr omName function:

{
type kDNSAddressType,

t ar get Dormai nNane " new on. appl e.com ",
resul t | PAddress [155, 227, 54, 3],

}

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

The result code is ni | if the function succeeded; otherwise, the result code is
one of the error codes described in the section “DNS Error Codes” beginning
on page 1-32.

If nameString ends with the period (' . ') character, the string is assumed to
be in conformance with RFC 1123. If nameString does not end with the period
character, DNSGet Addr essFr onNane attempts to complete the name as
follows:

= DNSGet Addr essFr omiNare first appends a period to a copy of
nameString and attempts name resolution with that string.

= If that request is not successful, DNSGet Addr essFr omNane appends the
local domain name and a period to a copy of nameString and attempts
name resolution with that string.

DNSGetMailAddressFromName
DNSCet Mai | Addr essFr onNanme(nameString, clientContext, clientCallback)

Translates a domain name into the Internet address for a mail server that
serves that domain.

nameString An Internet domain name string.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Domain Name Service Callback Function Format”
on page 1-50.

The DNSGet Mai | Addr essFr omNane function returns the IP address of a
mail server that serves the domain specified by nameString.

DNSCet Mai | Addr essFr omNane fills in the r esul t | PAddr ess slotin a
DNS results frame, as described in the section “The Domain Name Service
Callback Function Format” beginning on page 1-50, and calls your callback
function with the result code and that frame as parameters. The following is
an example of a results frame for the DNSGet Mai | Addr essFr onNarre
function:

Newton Internet Enabler Interface Reference 1-63

1-64

CHAPTER 1

Newton Internet Enabler

{

type kDNSAddressType,

t ar get Dormai nNane "nail . newt on. appl e.com ",
resul t | PAddress [155, 227, 54, 3],

}

The result code is ni | if the function succeeded; otherwise, the result code is
one of the error codes described in the section “DNS Error Codes” beginning
on page 1-32.

If nameString ends with the period (' . ') character, the string is assumed to
be in conformance with RFC 1123. If nameString does not end with the period
character, DNSGet Addr essFr omNane attempts to complete the name as
follows:

= DNSGet Mai | Addr essFr onNane first appends a period to a copy of
nameString and attempts name resolution with that string.

» If that request is not successful, DNSGet Mai | Addr essFr omNane
appends the local domain name and a period to a copy of nameString and
attempts mail server resolution with that string.

If there is more than one mail server for the domain specified by nameString,
the results array contains multiple r esul t Donai nNane frames, one for each
mail server. The frames are ordered in the results frame according to the
preference order of the mail exchange resource record.

DNSGetMailServerNameFromDomainName

DNSCet Mai | Ser ver NameFr omDonmai nNanme(nameString,
clientContext, clientCallback)

Translates a domain name into the domain name for a mail server that serves
that domain.

nameString An Internet domain name string.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

clientCallback The client callback function, as described in the section
“The Client Callback Parameter” on page 1-44.

The DNSGet Mai | Ser ver NaneFr onDonai nNane function returns the
domain name for a mail server that serves the domain specified by
nameString. DNSGet Mai | Ser ver NarmeFr onDonmai nNarre fills in the

r esul t Domai nNarme slot in a DNS results frame, as described in the section
“The Domain Name Service Callback Function Format” beginning on

page 1-50, and calls your callback function with the result code and that
frame as parameters. The following is an example of a results frame for the
DNSGet Mai | Ser ver NameFr onDomai nNane function:

{

type kDNSDomai nNameType,

t ar get Domai nName "newt on. appl e.com ",

resul t Domai nNarme "mai | . newt on. appl e.com ",

}

The result code is ni | if the function succeeded; otherwise, the result code is
one of the error codes described in the section “DNS Error Codes” beginning
on page 1-32.

If nameString ends with the period (' . ') character, the string is assumed to
be in conformance with RFC 1123. If nameString does not end with the period
character, DNSGet Mai | Ser ver NaneFr onDonri nNane attempts to
complete the name as follows:

= DNSGet Mai | Ser ver NaneFr onDonai nNane first appends a period to a
copy of nameString and attempts name resolution with that string.

= If that request is not successful,
DNSCet Mui | Ser ver NameFr onDomai nNane appends the local domain
name and a period to a copy of nameString and attempts name resolution
with that string.

If there is more than one mail server for the domain specified by nameString,
the results array contains multiple r esul t Dorai nNane frames, one for each
mail server. The frames are ordered in the results frame according to the
preference order of the mail exchange resource record. This is the order in

Newton Internet Enabler Interface Reference 1-65

CHAPTER 1

Newton Internet Enabler

which a mail application should attempt to connect to the SMTP ports of
these servers.

DNSGetNameFromAddress

DNSGet NameFr omAddr ess(address, clientContext, clientCallback)
Translates an Internet address into its corresponding domain name.

address An Internet IP address, specified as a NewtonScript
array of four integer values. For example:
[155, 227, 54, 3].

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Client Callback Parameter” on page 1-44.

The DNSGet Addr essFr omNane function finds the domain name string for
the IP address. DNSGet NameFr omAddr ess fills in the r esul t Dormai nNane
slot in a DNS results frame, as described in the section “The Domain Name
Service Callback Function Format” beginning on page 1-50, and calls your
callback function with the result code and that frame as parameters. The
following is an example of a results frame for the

DNSGet Addr essFr onNane function:

{
type kDNSDomai nNaneType,

target | PAddress [155, 227, 54, 3],
resul t Domai nNane "new on. appl e.com ",

}

The result code is ni | if the function succeeded; otherwise, the result code is
one of the error codes described in the section “DNS Error Codes” beginning
on page 1-32.

If there is more than one domain name for the address specified by address,
the results array contains multiple results frames, each with a
resul t Domai nName slots.

1-66 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Newton Internet Enabler Options

This section describes the options that you can use to control Newton
Internet Enabler.

Inet Tool Expedited Data Transfer (‘iexp’) Option

The Inet Tool expedited data transfer option is used for the expedited
transmission of an unsigned data byte. You can use this option with an

Qut put request to your endpoint to cause the data in that request to be sent
immediately. You typically use this to send a break character or a similar
indicator.

Here is an example of this option:

{
| abel : "iexp",
type: " option,
opCode: opSet Requi r ed,
resul t: nil,
form "tenpl ate,
dat a:
{
arglist:
[
15 /1 expeditedData byte
1,
typelist:
[
"struct,
"byte
1
H
}

Newton Internet Enabler Interface Reference 1-67

CHAPTER 1

Newton Internet Enabler

The data slots in the expedited data transfer option frame are described in

Table 1-6.

Table 1-6 Inet tool expedited data transfer option data slots

Option field Description

expedi t edDat a The data byte that was received or is to be sent.

Inet Tool Physical Link Identifier ('ilid") Option

The Inet physical link identifier option is used to set or retrieve the physical
link identifier.

Here is an example of using this option to set the physical link identifier:

{
| abel : "ilid",
type: "option,
opCode: opSet Requi r ed,
result: nil,
form "tenpl ate,
dat a:
{
arglist:
[
linklD
]1
typelist:
[
"struct,
"ul ong
]l
}1
}

1-68 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

The data slots in the physical link identifier option frame are described in
Table 1-7.

Table 1-7 Inet tool physical link identifier option data slots
Option field Description
linklD The link identifier.

Inet Tool Local Port (‘ilpt’) Option

The Inet Tool local port option is used to set or retrieve the Internet port
number for a transport service. The rules shown in Table 1-9 apply to port
number assignments.

Here is an example of this option to set the port number:

{
| abel : "ilpt",
type: " option,
opCode: opSet Requi r ed,
resul t: nil,
form "tenpl ate,
dat a:
{
arglist:
[
7, /1 inetPortNumber
nil, /1 useDef aul t
1,
typelist:
[
"struct,
"short,
' bool ean

Newton Internet Enabler Interface Reference 1-69

CHAPTER 1

Newton Internet Enabler

1
b
}

The data slots in the local port option frame are described in Table 1-8.

Table 1-8 Inet tool local port option data slots
Option field Description
i net Port Nunber The reserved port number for this service. This

value is used as described in Table 1-9

useDef aul t A Boolean value that applies only to connect
binds for the UDP transport service type. If
useDef aul t istrue, the default UDP port
number is used.

Table 1-9 shows the use of the i net Port Nunber slot, based on the service
type and operation.

Table 1-9 Use of the port number by the Inet tool

Service type

and operation Description
Connect over TCP picks this port; no need to set.
TCP link

1-70 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

Table 1-9 Use of the port number by the Inet tool (continued)

Service type

and operation Description

Listen over The port on which to listen. Specify 0 to indicate

TCP link listening on all ports or use one of the port numbers as
specified in IEFT Assigned Numbers RFC.

Connect over The port to bind to locally. Specify useDef aul t: t r ue

UDP link to indicate that Newton Internet Enabler should choose

the port number for you, in which case the assigned
value will be returned in the option.

Listen over The port on which to listen. Specify 0 to indicate
UDP link listening on all ports or use one of the port numbers as
specified in IEFT Assigned Numbers RFC.

Inet Profile (iprf) Option

The Inet profile option is used to retrieve the the local and gateway IP
addresses used by your endpoint.

Here is an example of this option to get the IP addresses:

{
| abel : "iprf",
type: " option,
opCode: opGet Current,
dat a:
{
arglist:
[
[0,0,0,0], /1 local host (Newton) |P address
[0,0,0,0], /1 gateway host |P address
] i)
typelist:
[
"struct,

Newton Internet Enabler Interface Reference 1-71

CHAPTER 1

Newton Internet Enabler

["array, 'byte, 4],
['array, 'byte, 4],
1
1

Inet Tool TCP Remote Socket ('itrs’) Option

The Inet Tool TCP remote socket option is used to set or retrieve the
parameters of the remote host. If you are sending a Connect request over a
TCP link, you must use this option to retrieve the remote socket address; if
you are sending a Li st en request over a TCP link, you can use this option
to retrieve the address of the sender of the data.

Here is an example of using this option to set the TCP remote socket:

{

| abel : "itrs",
type: "option,
opCode: opSet Requi r ed,
result: nil,
form "tenpl ate,
dat a:
{
arglist:
[
[130,43, 2, 2], /1 host Addr ess
7, /1 1netPortNunmber
1.
typelist:
[
"struct,
[*array, 'byte, 4],
"short

1-72 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

H
}

The data slots in the TCP remote socket option frame are described in
Table 1-10.

Table 1-10 Inet tool TCP remote socket option data slots
Option field Description
host Addr ess Internet address of remote host IP address,

expressed as four single-byte values.

| net Por t Nunber Reserved Internet port identifier.

Inet Tool Transport Service Type (‘itsv') Option

The Inet Tool transport service type option is used to specify the transport
service type associated with a link.

Here is an example of using this option to set the transport service type:

{

| abel : "itsv",
type: " option,
opCode: opSet Requi r ed,
resul t: nil,
form "tenpl ate,
dat a:
{
arglist:
[
kTCP /1 transport Service
] i)
typelist:

[

Newton Internet Enabler Interface Reference

1-73

CHAPTER 1

Newton Internet Enabler

"struct,
"ul ong
] ’
})

}
The data slots in the link service type option frame are described in
Table 1-11.
Table 1-11 Inet tool link service type option data slots
Option field Description
transport Service The transport service type. Use one of the

constants described in the section “Transport
Service Type Constants” beginning on
page 1-31.

Inet Tool UDP Destination Socket ('iuds’) Option

The Inet Tool UDP destination socket option is used to set or retrieve the
Internet destination host Internet socket address that is used for data
transmission over a UDP link.

Here is an example of using this option to retrieve the current UDP
destination address:

{
| abel : "iuds",
type: ' option,
opCode: opSet Requi r ed,
result: nil,
form "tenpl ate,
dat a:
{
arglist:

1-74 Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

[0,0,0,0] /'l host Addr ess
0, /'l | net Port Nunber
] i)
typelist:
[
"struct,
["array, 'byte, 4],
"short

}

The data slots in the UDP destination socket option frame are described in
Table 1-12.

Table 1-12 Inet tool UDP destination socket option data slots
Option field Description
host Addr ess The destination IP address, expressed as four

single-byte values.

I net Por t Nunber The reserved Internet port identifier.

Inet Tool UDP Source Socket ('iuss’) Option

The Inet Tool UDP source socket option is used to retrieve the host Internet
socket address that sent a datagram received by your application.

Here is an example of using this option to retrieve the UDP source socket:

{

| abel : "iuds",
type: " option,
opCode: opGet Current,

Newton Internet Enabler Interface Reference 1-75

1-76

CHAPTER 1

Newton Internet Enabler

result: nil,
form "tenpl at e,
dat a:
{
arglist:
[
[0,0,0,0], /1 host Addr ess
port, /1 1 net Port Nunmber
]1
typelist:
[
'struct,
["array, 'byte, 4],
"short
]
}1

}

The data slots in the UDP source socket option frame are described in
Table 1-13.

Table 1-13 Inet tool UDP source socket option data slots
Option field Description
host Addr ess The source IP address, expressed as four

single-byte values.

| net Por t Nurrber The reserved Internet port identifier.

Newton Internet Enabler Exceptions

Any of the Newton Internet Enabler functions that receive a link identifier as
a parameter can throw an exception if the link ID is not valid. The exception
frame is as follows:

Newton Internet Enabler Interface Reference

CHAPTER 1

Newton Internet Enabler

type:

error:

}

This exception is raised in response to two conditions:

| evt. ex.conm,
kl net Er r NoSuchLi nkl D,

= You passed in a link ID that does not exist.

= You passed in ni | as the link ID and there are not any links defined.

Summary of Newton Internet Enabler

Link Controller Errors

const ant kl net Er r NoSuchLi nkl D = -60501;
constant kil net ErrLi nkDi sconnect ed = -60504;
const ant kl net Err Connect Li nkFai | ed = -60505;
DNS Errors

const ant kDNSEr r NoAnswer FoundYet = -60751;
constant kDNSErrlnternal Err = -60752;
const ant kDNSErr NameSynt axErr = -60791,;
const ant kDNSEr r NoNaneSer ver = -60794;
const ant kDNSEr r Aut hNaneEr r = -60795;
const ant kDNSEfrr NoAnswer Er r = -60796;
const ant kDNSEr r Nonexi st ent Domai n = -60797;
const ant kDNSEr r Qut Of Menor y = -60798;
const ant kDNSEr r Coul dNot Cont act Ser ver = -60800;
const ant kDNSErr NoSer ver sAvai | abl e = -60801;
const ant kDNSEr r Request For mat Er r = -60802;
const ant kDNSErr ServerlInternal Err = -60803;
Summary of Newton Internet Enabler 1-77

1-78

CHAPTER 1

Newton Internet Enabler

const ant
const ant
const ant
const ant
const ant

kDNSEr r Ser ver Not | mpl enent ed
kDNSEr r Ser ver Ref used

kDNSEr r UnknownSer ver Err
kDNSEr r NoResponseFr onfser ver

kDNSEr r NoResponseFr omAny Ser ver

- 60804;
- 60805;
- 60806;
- 60814;
- 60815;

Newton Internet Enabler Lower-Level Tool Errors

const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant

const ant
const ant
const ant

kl net Tool Err Bi ndFai | ed

kl net Tool Err | PBi ndFai | ed

kl net Tool Er r PushModul e

kl net Tool Errllink

kl net Tool Err Net Act i vat eReq
kl net Tool Err TCPBi nd

kl net Tool Err Get Request

kl net Tool Err Put Request

kl net Tool Err Connect

kl net Tool Err Dl Attach

kl net Tool Err Bi nd

kl net Tool Er r OpenLi nk

kl net Tool Err Unl i nk

kl net Tool Er r Qut O Phase

kl net Tool Err AddRout e

kl net Tool ErrLi sten

kl net Tool Er r Li nkNot Opened
kl net Tool Err Dri ver Not Opened
kl net Tool Err St r eamNot Opened
kl net Tool Er r Bi ndReqgFai | ed
kl net Tool Er r ConnResReqFai | ed

kl net Tool Er r MemAl | oc
kl net Tool Err MsgType
kl net Tool Er r NoDevi ce

Summary of Newton Internet Enabler

- 60001;
- 60002;
- 60004;

= -60005;

- 60006;
- 60007;
- 60008;

= -60009;

-60010;

= -60011,

-60012;
-60013;

= -60014,

-60015;
-60016;
-60017;

= -60018;

-60019;

= -60020;

- 60021;
-60022;

-60023;
-60024;
- 60025;

CHAPTER 1

Newton Internet Enabler

const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant

const ant
const ant
const ant
const ant
const ant

kl net Tool Errl | egal OpenOnSt r eam

kl net Tool Err Reql nl nval i dSt at e

kl net Tool ErrPrimtiveTooSmal |

kl net Tool ErrPrimtiveQut Of Range
kl net Tool ErrPrimtiveOnl nvalidStr
kl net Tool Er r MessageToolLong

kl net Tool Er r Net wor kAl r eadyActi ve
kl net Tool Er r Net wor kNunber I nval i d
kl net Tool Er r Unsupport edl oct |

kl net Tool Err St reanAl r eadyAt t ached
kl net Tool Er r UnknownMux| ndex

kl net Tool Er r Net wor kil sl nacti ve

kl net Tool Er r BogusConnecti on

kl net Tool ErrlnvalidBillinghMde

kl net Tool Err NoTri gSel ect edl nAl arm
kl net Tool ErrinvalidTrigSi ze

kl net Tool Errl nval i dConnect i onRef
kl net Tool Errl | egal Mlatal nPrim

kl net Tool Err M ssi ngMdat al nPri m

kl net Tool Errl nval i dSegnent edPri m
kl net Tool Err I nval i dNPI Ver si on

kl net Tool Errl nval i dAddr ess

kl net Tool Er r Qut OF TCPPor t Nuber s
kl net Tool Err Socket | nUse

kl net Tool Err Reser vedPor t Nunmber

kl net Tool Er r ExpDat aNot Support ed

kl net Tool Er r Redundent Request

kl net Tool Er r Unexpect edDLPri m

kl net Tool Err Unexpect edTPI Pri m
kl net Tool Er r Unexpect edNPI Pri m
kl net Tool Er r UnknownTPI Er r or Code

Summary of Newton Internet Enabler

- 60026;
-60027;
-60028;
- 60029;
- 60030;
- 60031,
-60032;

= -60033;

- 60034,

= -60035;

- 60036;
- 60037,
-60038;
- 60039;
- 60040;
-60041;

= -60042,

-60043;

= -60044;

- 60045;
- 60046;
-60047;
-60048;
-60049;
- 60050;
- 60051;

-60052;
- 60053;
- 60054,
- 60055;
- 60056;

1-79

1-80

CHAPTER 1

Newton Internet Enabler

constant KklnetErrStream noperative .= -60057;

Link Controller Functions and Methods

linkId | net AddNewLi nkEnt r y(newLinkInfo) ;

| net Cancel Current Request (linkld) ;

I net Cancel Li nk(linkld, clientContext, clientCallback) ;

I net Di sconnect Li nk(linkld, clientContext, clientCallback) ;
statusView | net Di spl aySt at us(linkld, statusView, status) ;
linksStatusFrame | net Get Al | Li nksSt at us() ;

linkID | net Get Def aul t Li nkl D() ;

linkEntry | net Get Li nkEnt r y(linkID) ;

| net Get Li nkSt at us(linkID) ;

| net G abLi nk(linkld, clientContext, clientCallback) ;

view | net OpenConnect i onSl i p(linkld, clientContext, clientCallback) ;
| net Rel easelLi nk(linkld, clientContext, clientCallback) ;

I net Set Def aul t Li nkl I linkld) ;

DNS Functions and Methods

DNSCancel Request s(clientContext, clientCallback)
DNSGet Addr essFr onName(nameString, clientContext, clientCallback) ;
DNSGCet Mai | Addr essFr omName(nameString, clientContext, clientCallback) ;
DNSCet Mai | Ser ver NameFr onDonmai nNane(nameString,

clientContext, clientCallback) ;
DNSGet NanmeFr omAddr ess(address, clientContext, clientCallback) ;

Exceptions

| evt. ex. comm

Summary of Newton Internet Enabler

Index

A

application-related error codes 1-37

B

using 1-27

E

binding
local port numbers for 1-17
binding endpoints with links 1-17

C

callback functions 1-9
example of 1-10, 1-28
for DNS functions 1-50
for link controller functions 1-45
client callback 1-44
client context 1-26, 1-44
configuring links for endpoints 1-16
constants
application-related error codes 1-37
DNS error codes 1-32
Inet tool error codes 1-34
kEventToolSpecific 1-42
status code 1-31
tool-specific error codes 1-41
transport service type 1-31
UDP error codes 1-40

D

default link identifier 1-12, 1-43
displaying status 1-15
DNSCancelRequests function 1-28, 1-61
DNS error codes 1-32
DNSGetAddressFromName function 1-62

DNSGetMailAddressFromName function 1-63

DNSGetMailServerNameFromDomainName
function 1-64
DNSGetNameFromAddress function 1-66
DNS results frame 1-51
domain name service
about 1-2, 1-6

endpoints
and configuring links 1-16
binding with links 1-17
connecting with links 1-18
disconnecting 1-25
restrictions on use of 1-9
using several with one link 1-8, 1-9
with links 1-8

error codes
application-related 1-37
DNS 1-32
Inet tool 1-34
tool-specific 1-41
UDP 1-40

events 1-42
kEventToolSpecific 1-42

expedited data
receiving 1-25
sending 1-21

G

grabbing a link 1-5, 1-12

InetAddNewLinkEntry function 1-53
InetCancelCurrentRequest function 1-53
InetCancelLink function 1-53
Inet communications tool

about 1-2
InetDisconnectLink function 1-54
InetDisplayStatus function 1-15, 1-54
InetGetAllLinksStatus function 1-56
InetGetDefaultLinkID function 1-57
InetGetLinkEntry function 1-57
InetGetLinkStatus function 1-57
InetGrabLink function 1-12, 1-58
InetOpenConnectionSlip function 1-59

IN-1

INDEX

Inet profile option 1-71 InetAddNewLinkEntry 1-53

InetReleaseLink function 1-26, 1-60 InetCancelCurrentRequest 1-53

InetSetDefaultLinkID function 1-61 InetCancelLink 1-53

Inet tool InetDisconnectLink 1-54
about 1-4 InetDisplayStatus 1-15, 1-54

Inet tool error codes 1-34 InetGetAllLinksStatus 1-56

Inet tool expedited data transfer option 1-67 InetGetDefaultLinkID 1-57

Inet tool local port option 1-69 InetGetLinkEntry 1-57

Inet tool physical link identifier option 1-68 InetGetLinkStatus 1-57

Inet tool TCP remote socket option 1-72 InetGrabLink 1-12, 1-58

Inet tool transport service type option 1-73 InetOpenConnectionSlip 1-59

Inet tool UDP destination socket option 1-74 InetReleaseLink 1-26, 1-60

Inet tool UDP source socket option 1-75 InetSetDefaultLinkID 1-61

Internet Setup program 1-2

N

K
Newton Internet Enabler
kEventToolSpecific event 1-42 about 1-2
and communications endpoints 1-8
callback functions 1-9
components 1-3

L components of 1-2
events 1-42
link controller options for 1-29
about 1-2,1-4 using 1-7
using 1-11

link controller status frame 1-45
link identifier 1-43

linkInfo frame 1-46 (@)

link information frame 1-46

links options
binding with 1-17 for each endpoint call 1-29
configuring with endpoints 1-16 for Newton Internet Enabler 1-67
connecting to 1-18 Inet profile (iprf') 1-71
default identifier for 1-12 Inet tool expedited data transfer (iexp') 1-67
grabbing 1-5, 1-12 Inet tool local port (‘ilpt’) 1-69
releasing 1-26 Inet tool physical link identifier ('ilid") 1-68
sending data over 1-18 Inet tool TCP remote socket ('itrs') 1-72
status of 1-15 Inet tool transport service type ('itsv') 1-73
with endpoints 1-8 Inet tool UDP destination socket (‘iuds') 1-74
with multiple endpoints 1-8, 1-9 Inet tool UDP source socket (‘iuss') 1-75

local port numbers 1-17 using 1-29

M P

methods and functions power management 1-27

DNSCancelRequests 1-28, 1-61
DNSGetAddressFromName 1-62
DNSGetMailAddressFromName 1-63
DNSGetMailServerNameFromDomainName 1-64 R

DNSGetNameFromAddress 1-66
receiving data 1-21

IN-2

INDEX

expedited 1-25

with TCP 1-23

with UDP 1-21
releasing links 1-26
results frame 1-51

S

sending data 1-18
expedited data 1-21
with TCP 1-20
with UDP 1-19

status code constants 1-31

status frame 1-45

status information 1-15

T

TCP

receiving data with 1-23

sending data with 1-20
tool-specific error codes 1-41
transport service type constants 1-31

U

ubDbr
receiving data with 1-21
sending data with 1-19
UDP error codes 1-40

IN-3

	Contents
	Newton Internet Enabler
	About Newton Internet Enabler
	Figure�1-1 The Newton Internet Enabler layers and ...
	The Inet Tool Layer
	The Link Controller
	The Domain Name Service Interface

	Using Newton Internet Enabler
	Using Endpoints With Newton Internet Enabler Links...
	Using Multiple Endpoints With a Link

	Newton Internet Enabler and Callback Functions
	Using the Newton Internet Enabler Link Controller
	Grabbing a Link
	Retrieving and Displaying Link Status Information
	Configuring Newton Internet Enabler for Your Endpo...
	Binding Your Endpoint with Newton Internet Enabler...
	Table�1-1 Local port numbers for binding with Newt...

	Connecting Your Endpoint with Newton Internet Enab...
	Sending Data
	Sending Data With a UDP Connection
	Sending Data With a TCP Connection

	Receiving Data
	Receiving Data With UDP
	Receiving Data With TCP

	Disconnecting Your Endpoint
	Releasing Your Link
	Power Management and Internet Links

	Using the Domain Name Service Interface
	Using the Newton Internet Enabler Options
	Table�1-2 Newton Internet Enabler options (continu...

	Newton Internet Enabler Interface Reference
	Constants
	Status Code Constants
	Transport Service Type Constants
	Link Controller Error Codes
	DNS Error Codes
	Newton Internet Enabler Lower-Level Tool Errors
	Inet Tool Errors
	Application-related Errors
	UDP Errors
	Inet Tool-Specific Errors

	Newton Internet Enabler Events
	Table�1-3 Newton Internet Enabler Application Even...
	Handing TCP Disconnect Events

	Newton Internet Enabler Function Parameter Informa...
	The Link Identifier Parameter
	The Client Context Parameter
	The Client Callback Parameter
	The Link Controller Callback Function Format
	The Link Controller Status Frame

	The Link Entry Information Frame
	Login Script Frames
	Table�1-4 Login script frames (continued)

	The Domain Name Service Callback Function Format
	The DNS Results Frame
	Table�1-5 Result slots for each DNS operation

	Link Controller Functions and Methods
	InetAddNewLinkEntry
	InetCancelCurrentRequest
	InetCancelLink
	InetDisconnectLink
	InetDisplayStatus
	InetGetAllLinksStatus
	InetGetDefaultLinkID
	InetGetLinkEntry
	InetGetLinkStatus
	InetGrabLink
	InetOpenConnectionSlip
	InetReleaseLink
	InetSetDefaultLinkID

	Domain Name Service Functions and Methods
	DNSCancelRequests
	DNSGetAddressFromName
	DNSGetMailAddressFromName
	DNSGetMailServerNameFromDomainName
	DNSGetNameFromAddress

	Newton Internet Enabler Options
	Inet Tool Expedited Data Transfer ('iexp') Option
	Table�1-6 Inet tool expedited data transfer option...

	Inet Tool Physical Link Identifier ('ilid') Option...
	Table�1-7 Inet tool physical link identifier optio...

	Inet Tool Local Port ('ilpt') Option
	Table�1-8 Inet tool local port option data slots
	Table�1-9 Use of the port number by the Inet tool ...

	Inet Profile ('iprf') Option
	Inet Tool TCP Remote Socket ('itrs') Option
	Table�1-10 Inet tool TCP remote socket option data...

	Inet Tool Transport Service Type ('itsv') Option
	Table�1-11 Inet tool link service type option data...

	Inet Tool UDP Destination Socket ('iuds') Option
	Table�1-12 Inet tool UDP destination socket option...

	Inet Tool UDP Source Socket ('iuss') Option
	Table�1-13 Inet tool UDP source socket option data...

	Newton Internet Enabler Exceptions

	Summary of Newton Internet Enabler
	Link Controller Errors
	DNS Errors
	Newton Internet Enabler Lower-Level Tool Errors
	Link Controller Functions and Methods
	DNS Functions and Methods
	Exceptions

